Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cells ; 12(18)2023 09 08.
Article in English | MEDLINE | ID: mdl-37759463

ABSTRACT

Brown adipose tissue (BAT) plays an important role in energy homeostasis by generating heat from chemical energy via uncoupled oxidative phosphorylation. Besides its high mitochondrial content and its exclusive expression of the uncoupling protein 1, another key feature of BAT is the high expression of myoglobin (MB), a heme-containing protein that typically binds oxygen, thereby facilitating the diffusion of the gas from cell membranes to mitochondria of muscle cells. In addition, MB also modulates nitric oxide (NO•) pools and can bind C16 and C18 fatty acids, which indicates a role in lipid metabolism. Recent studies in humans and mice implicated MB present in BAT in the regulation of lipid droplet morphology and fatty acid shuttling and composition, as well as mitochondrial oxidative metabolism. These functions suggest that MB plays an essential role in BAT energy metabolism and thermogenesis. In this review, we will discuss in detail the possible physiological roles played by MB in BAT thermogenesis along with the potential underlying molecular mechanisms and focus on the question of how BAT-MB expression is regulated and, in turn, how this globin regulates mitochondrial, lipid, and NO• metabolism. Finally, we present potential MB-mediated approaches to augment energy metabolism, which ultimately could help tackle different metabolic disorders.


Subject(s)
Adiposity , Myoglobin , Humans , Animals , Mice , Obesity , Adipose Tissue, Brown , Cell Membrane , Fatty Acids
2.
iScience ; 26(8): 107298, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37520731

ABSTRACT

Physical exercise can lower lung cancer incidence. However, its effect on lung cancer progression is less understood. Studies on exercising mice have shown decreased ectopic lung cancer growth through the secretion of interleukin-6 from muscles and the recruitment of natural killer (NK) cells to tumors. We asked if exercise suppresses lung cancer in an orthotopic model also. Single-housed C57Bl/6 male mice in cages with running wheels were tail vein-injected with LLC1.1 lung cancer cells, and lung tumor nodules were analyzed. Exercise did not affect lung cancer. Therefore, we also tested the effect of exercise on a subcutaneous LLC1 tumor and a tail vein-injected B16F10 melanoma model. Except for one case of excessive exercise, tumor progression was not influenced. Moderately exercising mice did not increase IL-6 or recruit NK cells to the tumor. Our data suggest that the exercise dose may dictate how efficiently the immune system is stimulated and controls tumor progression.

3.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373327

ABSTRACT

The brain requires over one-fifth of the total body oxygen demand for normal functioning. At high altitude (HA), the lower atmospheric oxygen pressure inevitably challenges the brain, affecting voluntary spatial attention, cognitive processing, and attention speed after short-term, long-term, or lifespan exposure. Molecular responses to HA are controlled mainly by hypoxia-inducible factors. This review aims to summarize the cellular, metabolic, and functional alterations in the brain at HA with a focus on the role of hypoxia-inducible factors in controlling the hypoxic ventilatory response, neuronal survival, metabolism, neurogenesis, synaptogenesis, and plasticity.


Subject(s)
Acclimatization , Altitude , Humans , Acclimatization/physiology , Hypoxia/metabolism , Oxygen , Brain/metabolism , Cognition
4.
Sci Rep ; 13(1): 7530, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161046

ABSTRACT

Myoglobin (MB) is expressed in different cancer types and may act as a tumor suppressor in breast cancer. The mechanisms by which basal MB expression level impacts murine mammary tumorigenesis are unclear. We investigated how MB expression in breast cancer influences proliferation, metastasis, tumor hypoxia, and chemotherapy treatment in vivo. We crossed PyMT and WapCreTrp53flox mammary cancer mouse models that differed in tumor grade/type and onset of mammary carcinoma with MB knockout mice. The loss of MB in WapCre;Trp53flox mice did not affect tumor development and progression. On the other hand, loss of MB decreased tumor growth and increased tissue hypoxia as well as the number of lung metastases in PyMT mice. Furthermore, Doxorubicin therapy prevented the stronger metastatic propensity of MB-deficient tumors in PyMT mice. This suggests that, although MB expression predicts improved prognosis in breast cancer patients, MB-deficient tumors may still respond well to first-line therapies. We propose that determining the expression level of MB in malignant breast cancer biopsies will improve tumor stratification, outcome prediction, and personalized therapy in cancer patients.


Subject(s)
Carcinoma , Myoglobin , Animals , Mice , Myoglobin/genetics , Biopsy , Disease Models, Animal , Hypoxia/genetics , Mice, Knockout
5.
Int J Health Sci (Qassim) ; 17(2): 28-36, 2023.
Article in English | MEDLINE | ID: mdl-36891043

ABSTRACT

Objective: The prostate-specific antigen (PSA) is the primary biomarker to diagnose prostate cancer. Hepcidin has been reported as an alternative for this diagnosis; however, it is unclear how PSA and hepcidin function at high altitude (HA). This study aims to assess the association between hepcidin with PSA in HA residents chronically exposed to hypobaric hypoxia. Methods: We retrospectively examined data of 70 healthy males (aged 18-65-years-old) from four different altitudes cities in Peru: Lima (<150 m), Huancayo (2380 m), Puno (3800 m), and Cerro de Pasco (4320 m). Serum hepcidin, testosterone, and PSA were analyzed by chemiluminescence immunoassay. HA parameters (hemoglobin [Hb], pulse oxygen saturation [SpO2], and chronic mountain sickness [CMS] score) were also included in the study. Bivariate analyses and a multivariate linear mixed model were used to evaluate the association between hepcidin and PSA, adjusted by HA parameters, age, and body mass index (BMI). Results: Cases of excessive erythrocytosis (EE) (Hb >21 g/dL) were observed in the three highest cities. Hepcidin was positively correlated with Hb, CMS score, and BMI (P ≤ 0.05). Hepcidin was higher in Huancayo with respect to Puno, while PSA was lower in Cerro de Pasco in regard to Puno and Lima (P ≤ 0.05). Neither hepcidin nor PSA was increased by altitude in each city (P > 0.05). We did not find an association between hepcidin and PSA, even adjusted by age, BMI, Hb, and SpO2 (P ≤ 0.05). Conclusion: These findings showed no association between hepcidin and PSA levels in healthy residents at HA.

6.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36232784

ABSTRACT

The expression of myoglobin (MB), well known as the oxygen storage and transport protein of myocytes, is a novel hallmark of the luminal subtype in breast cancer patients and correlates with better prognosis. The mechanisms by which MB impacts mammary tumorigenesis are hitherto unclear. We aimed to unravel this role by using CRISPR/Cas9 technology to generate MB-deficient clones of MCF7 and SKBR3 breast cancer cell lines and subsequently characterize them by transcriptomics plus molecular and functional analyses. As main findings, loss of MB at normoxia upregulated the expression of cell cyclins and increased cell survival, while it prevented apoptosis in MCF7 cells. Additionally, MB-deficient cells were less sensitive to doxorubicin but not ionizing radiation. Under hypoxia, the loss of MB enhanced the partial epithelial to mesenchymal transition, thus, augmenting the migratory and invasive behavior of cells. Notably, in human invasive mammary ductal carcinoma tissues, MB and apoptotic marker levels were positively correlated. In addition, MB protein expression in invasive ductal carcinomas was associated with a positive prognostic value, independent of the known tumor suppressor p53. In conclusion, we provide multiple lines of evidence that endogenous MB in cancer cells by itself exerts novel tumor-suppressive roles through which it can reduce cancer malignancy.


Subject(s)
Breast Neoplasms , Myoglobin/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclins/metabolism , Doxorubicin/pharmacology , Epithelial-Mesenchymal Transition , Female , Humans , Oxygen/metabolism , Tumor Suppressor Protein p53/genetics
7.
Front Oncol ; 12: 976961, 2022.
Article in English | MEDLINE | ID: mdl-36052260

ABSTRACT

Erythropoietin receptor (EPOR) is widely expressed in healthy and malignant tissues. In certain malignancies, EPOR stimulates tumor growth. In healthy tissues, EPOR controls processes other than erythropoiesis, including mitochondrial metabolism. We hypothesized that EPOR also controls the mitochondrial metabolism in cancer cells. To test this hypothesis, we generated EPOR-knockdown cancer cells to grow tumor xenografts in mice and analyzed tumor cellular respiration via high-resolution respirometry. Furthermore, we analyzed cellular respiratory control, mitochondrial content, and regulators of mitochondrial biogenesis in vivo and in vitro in different cancer cell lines. Our results show that EPOR controls tumor growth and mitochondrial biogenesis in tumors by controlling the levels of both, pAKT and inducible NO synthase (iNOS). Furthermore, we observed that the expression of EPOR is associated with the expression of the mitochondrial marker VDAC1 in tissue arrays of lung cancer patients, suggesting that EPOR indeed helps to regulate mitochondrial biogenesis in tumors of cancer patients. Thus, our data imply that EPOR not only stimulates tumor growth but also regulates tumor metabolism and is a target for direct intervention against progression.

8.
Haematologica ; 107(10): 2454-2465, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35385924

ABSTRACT

Anemia of cancer (AoC) with its multifactorial etiology and complex pathology is a poor prognostic indicator for cancer patients. One of the main causes of AoC is cancer-associated inflammation that activates mechanisms, commonly observed in anemia of inflammation, whereby functional iron deficiency and iron-restricted erythropoiesis are induced by increased hepcidin levels in response to raised levels of interleukin-6. So far only a few AoC mouse models have been described, and most of them did not fully recapitulate the interplay of anemia, increased hepcidin levels and functional iron deficiency in human patients. To test if the selection and the complexity of AoC mouse models dictates the pathology or if AoC in mice per se develops independently of iron deficiency, we characterized AoC in Trp53floxWapCre mice that spontaneously develop breast cancer. These mice developed AoC associated with high levels of interleukin-6 and iron deficiency. However, hepcidin levels were not increased and hypoferremia coincided with anemia rather than causing it. Instead, an early shift in the commitment of common myeloid progenitors from the erythroid to the myeloid lineage resulted in increased myelopoiesis and in the excessive production of neutrophils that accumulate in necrotic tumor regions. This process could not be prevented by either iron or erythropoietin treatment. Trp53floxWapCre mice are the first mouse model in which erythropoietin-resistant anemia is described and may serve as a disease model to test therapeutic approaches for a subpopulation of human cancer patients with normal or corrected iron levels who do not respond to erythropoietin.


Subject(s)
Anemia , Breast Neoplasms , Erythropoietin , Iron Deficiencies , Anemia/drug therapy , Anemia/etiology , Anemia/pathology , Animals , Breast Neoplasms/complications , Erythropoiesis , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , Female , Hepcidins/genetics , Humans , Inflammation/complications , Interleukin-6/genetics , Iron/therapeutic use , Mice
9.
Commun Biol ; 4(1): 938, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354241

ABSTRACT

Erythropoietin (EPO) improves neuronal mitochondrial function and cognition in adults after brain injury and in those afflicted by psychiatric disorders. However, the influence of EPO on mitochondria and cognition during development remains unexplored. We previously observed that EPO stimulates hippocampal-specific neuronal maturation and synaptogenesis early in postnatal development in mice. Here we show that EPO promotes mitochondrial respiration in developing postnatal hippocampus by increasing mitochondrial content and enhancing cellular respiratory potential. Ultrastructurally, mitochondria profiles and total vesicle content were greater in presynaptic axon terminals, suggesting that EPO enhances oxidative metabolism and synaptic transmission capabilities. Behavioural tests of hippocampus-dependent memory at early adulthood, showed that EPO improves spatial and short-term memory. Collectively, we identify a role for EPO in the murine postnatal hippocampus by promoting mitochondrial function throughout early postnatal development, which corresponds to enhanced cognition by early adulthood.


Subject(s)
Cognition/drug effects , Erythropoietin/administration & dosage , Hippocampus/drug effects , Mitochondria/drug effects , Neurons/drug effects , Animals , Hippocampus/physiology , Mice , Mice, Transgenic , Mitochondria/metabolism , Neurons/metabolism , Random Allocation
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(12): 159026, 2021 12.
Article in English | MEDLINE | ID: mdl-34384891

ABSTRACT

The identification of novel physiological regulators that stimulate energy expenditure through brown adipose tissue (BAT) activity in substrate catalysis is of utmost importance to understand and treat metabolic diseases. Myoglobin (MB), known to store or transport oxygen in heart and skeletal muscles, has recently been found to bind fatty acids with physiological constants in its oxygenated form (i.e., MBO2). Here, we investigated the in vivo effect of MB expression on BAT activity. In particular, we studied mitochondrial function and lipid metabolism as essential determinants of energy expenditure in this tissue. We show in a MB-null (MBko) mouse model that MB expression in BAT impacts on the activity of brown adipocytes in a twofold manner: i) by elevating mitochondrial density plus maximal respiration capacity, and through that, by stimulating BAT oxidative metabolism along with the organelles` uncoupled respiration; and ii) by influencing the free fatty acids pool towards a palmitate-enriched composition and shifting the lipid droplet (LD) equilibrium towards higher counts of smaller droplets. These metabolic changes were accompanied by the up-regulated expression of thermogenesis markers UCP1, CIDEA, CIDEC, PGC1-α and PPAR-α in the BAT of MB wildtype (MBwt) mice. Along with the emergence of the "browning" BAT morphology, MBwt mice exhibited a leaner phenotype when compared to MBko littermates at 20 weeks of age. Our data shed novel insights into MB's role in linking oxygen and lipid-based thermogenic metabolism. The findings suggest potential new strategies of targeting the MB pathway to treat metabolic disorders related to diminishing energy expenditure.


Subject(s)
Lipid Droplets/metabolism , Mitochondria/metabolism , Myoglobin/genetics , Oxygen/metabolism , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Disease Models, Animal , Energy Metabolism/genetics , Humans , Mice , Mice, Knockout , Mitochondria/genetics , Muscle, Skeletal/metabolism , Myoglobin/metabolism , PPAR alpha/genetics , Palmitates/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Proteins/genetics , Thermogenesis/genetics , Uncoupling Protein 1/genetics
12.
Front Vet Sci ; 7: 596379, 2020.
Article in English | MEDLINE | ID: mdl-33195633

ABSTRACT

Restriction of nutrients to pathogens (nutritional immunity) is a critical innate immune response mechanism that operates when pathogens such as Mycobacterium tuberculosis have the potential to evade humoral immunity. Tuberculosis is of growing concern for zoological collections worldwide and is well-illustrated by infections of Asian and African elephants, where tuberculosis is difficult to diagnose. Here, we investigated hematological parameters and iron deposition in liver, lung, and spleen of three Asian elephants (Elephas maximus) infected with Mycobacterium tuberculosis. For reference purposes, we analyzed tissue samples from control M. tuberculosis-negative elephants with and without evidence of inflammation and/or chronic disease. Molecular analyses of bacterial lesions of post mortally collected tissues confirmed M. tuberculosis infection in three elephants. DNA sequencing of the bacterial cultures demonstrated a single source of infection, most likely of human origin. In these elephants, we observed moderate microcytic anemia as well as liver (mild), lung (moderate) and spleen (severe) iron accumulation, the latter mainly occurring in macrophages. Macrophage iron sequestration in response to infection and inflammation is caused by inhibition of iron export via hepcidin-dependent and independent mechanisms. The hepatic mRNA levels of the iron-regulating hormone hepcidin were increased in only one control elephant suffering from chronic inflammation without mycobacterial infection. By contrast, all three tuberculosis-infected elephants showed low hepcidin mRNA levels in the liver and low serum hepcidin concentrations. In addition, hepatic ferroportin mRNA expression was high. This suggests that the hepcidin/ferroportin regulatory system aims to counteract iron restriction in splenic macrophages in M. tuberculosis infected elephants to provide iron for erythropoiesis and to limit iron availability for a pathogen that predominantly proliferates in macrophages. Tuberculosis infections appear to have lingered for more than 30 years in the three infected elephants, and decreased iron availability for mycobacterial proliferation may have forced the bacteria into a persistent, non-proliferative state. As a result, therapeutic iron substitution may not have been beneficial in these elephants, as this therapy may have enhanced progression of the infection.

13.
Front Physiol ; 11: 537389, 2020.
Article in English | MEDLINE | ID: mdl-33117187

ABSTRACT

Erythropoietin (EPO) boosts exercise performance through increase in oxygen transport capacity following regular administration of EPO but preclinical study results suggest that single high dose of EPO also may improve exercise capacity. Twenty-nine healthy subjects (14 males/15 females; age: 25 ± 3 years) were included in a randomized, double-blind, placebo-controlled crossover study to assess peak work load and cardiopulmonary variables during submaximal and maximal cycling tests following a single dose of 60.000 IU of recombinant erythropoietin (EPO) or placebo (PLA). Submaximal exercise at 40%/60% of peak work load revealed no main effect of EPO on oxygen uptake (27.9 ± 8.7 ml min-1⋅kg-1/ 37.1 ± 13.2 ml min-1⋅kg-1) versus PLA (25.2 ± 3.7 ml min-1⋅kg-1/ 33.1 ± 5.3 ml min-1⋅kg-1) condition (p = 0.447/p = 0.756). During maximal exercise peak work load (PLA: 3.5 ± 0.6 W⋅kg-1 vs. EPO: 3.5 ± 0.6 W kg-1, p = 0.892) and peak oxygen uptake (PLA: 45.1 ± 10.4 ml⋅min-1 kg-1 vs. EPO: 46.1 ± 14.2 ml⋅min-1 kg-1, p = 0.344) reached comparable values in the two treatment conditions. Other cardiopulmonary variables (ventilation, cardiac output, heart rate) also reached similar levels in the two treatment conditions. An interaction effect was found between treatment condition and sex resulting in higher peak oxygen consumption (p = 0.048) and ventilation (p = 0.044) in EPO-treated males. In conclusion, in a carefully conducted study using placebo-controlled design the present data failed to support the hypothesis that a single high dose of EPO has a measurable impact on work capacity in healthy subjects.

15.
High Alt Med Biol ; 19(2): 116-123, 2018 06.
Article in English | MEDLINE | ID: mdl-29389240

ABSTRACT

Thiersch, Markus, and Erik R. Swenson. High altitude and cancer mortality. High Alt Med Biol 19:116-123, 2018.-Humans living at high altitude (HA) are exposed to chronic (hypobaric) hypoxia. Despite the permanent stress of hypoxic exposure, humans populating HA areas have reduced cancer mortality over a broad spectrum of cancer types. In fact, the majority of the physiological adaptive processes at HA occurring in response to hypoxia might be the driving force for reduced cancer mortality at HA. In this review, we summarize epidemiological and animal studies that compare cancer incidence and cancer mortality between HA and low altitude or between hypoxia and normoxia, respectively. We discuss the potential role of oxygen-independent and oxygen-dependent mechanisms that might contribute to reduced cancer mortality at HA. Reactive oxygen species and their detoxification as well as the hypoxia-inducible factors are especially promising targets and may be related to why cancer mortality is reduced at HA. In addition, we briefly discuss two aspects with a proven impact on tumorigenesis, namely the immune system and tumor surveillance as well as HA-induced metabolic changes. Further animal and clinical studies are clearly needed to explain why cancer mortality is reduced at HA and to decide whether HA or hypoxia-based therapeutic approaches could be implemented for cancer treatment. However, exposure to HA activates multiple adaptive mechanisms (oxygen independent and oxygen dependent) sharing common pathways as well as activating counteracting pathways, which complicate the identification of specific HA-induced mechanisms of tumor suppression.


Subject(s)
Acclimatization/physiology , Altitude Sickness/physiopathology , Altitude , Neoplasms/mortality , Altitude Sickness/complications , Animals , Humans , Neoplasms/complications , Neoplasms/physiopathology , Oxygen Consumption/physiology , Reactive Oxygen Species/metabolism
16.
Front Cell Neurosci ; 12: 532, 2018.
Article in English | MEDLINE | ID: mdl-30687018

ABSTRACT

Exposure to hypobaric hypoxia at high altitude (above 2500 m asl) causes cognitive impairment, mostly attributed to changes in brain perfusion and consequently neuronal death. Enriched environment and voluntary exercise has been shown to improve cognitive function, to enhance brain microvasculature and neurogenesis, and to be neuroprotective. Here we show that high-altitude exposure (3540 m asl) of Long Evans rats during early adulthood (P48-P59) increases brain microvasculature and neurogenesis but impairs spatial and visual memory along with an increase in neuronal apoptosis. We tested whether enriched environment including a running wheel for voluntary exercise (EE) can prevent cognitive impairment at high-altitude and whether apoptosis is prevented. We found that EE retained spatial and visual memory at high altitude, and prevented neuronal apoptosis. Further, we tested whether vascular endothelial growth factor (VEGF) signaling is required for the EE-mediated recovery of spatial and visual memory and the reduction in apoptosis. Pharmacological inhibition of VEGF signaling by oral application of a tyrosine kinase inhibitor (Vandetanib) prevented the recovery of spatial and visual memory in animals housed in EE, along with an increase in apoptosis and a reduction in neurogenesis. Surprisingly, inhibition of VEGF signaling also caused impairment in spatial memory in EE-housed animals reared at low altitude, affecting mainly dentate gyrus microvasculature but not neurogenesis. We conclude that EE-mediated VEGF signaling is neuroprotective and essential for the maintenance of cognition and neurogenesis during high-altitude exposure, and for the maintenance of spatial memory at low altitude. Finally, our data also underlines the potential risk of cognitive impairment and disturbed high altitude adaption from the use of VEGF-signaling inhibitors for therapeutic purposes.

17.
Br J Haematol ; 168(3): 429-42, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25283956

ABSTRACT

Recombinant human erythropoietin (rHuEPO) is an effective treatment for anaemia but concerns that it causes disease progression in cancer patients by activation of EPO receptors (EPOR) in tumour tissue have been controversial and have restricted its clinical use. Initial clinical studies were flawed because they used polyclonal antibodies, later shown to lack specificity for EPOR. Moreover, multiple isoforms of EPOR caused by differential splicing have been reported in cancer cell lines at the mRNA level but investigations of these variants and their potential impact on tumour progression, have been hampered by lack of suitable antibodies. The EpoCan consortium seeks to promote improved pathological testing of EPOR, leading to safer clinical use of rHuEPO, by producing well characterized EPOR antibodies. Using novel genetic and traditional peptide immunization protocols, we have produced mouse and rat monoclonal antibodies, and show that several of these specifically recognize EPOR by Western blot, immunoprecipitation, immunofluorescence, flow cytometry and immunohistochemistry in cell lines and clinical material. Widespread availability of these antibodies should enable the research community to gain a better understanding of the role of EPOR in cancer, and eventually to distinguish patients who can be treated safely by rHuEPO from those at increased risk from treatment.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Neoplasm Proteins/immunology , Receptors, Erythropoietin/immunology , Amino Acid Sequence , Animals , Chemistry Techniques, Synthetic/methods , Flow Cytometry/methods , Fluorescent Antibody Technique , Gene Silencing , Humans , Immunoprecipitation , Mice , Molecular Sequence Data , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Rats , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Risk Assessment/methods , Terminology as Topic , Tumor Cells, Cultured/metabolism
18.
Biomaterials ; 34(16): 4173-4182, 2013 May.
Article in English | MEDLINE | ID: mdl-23465832

ABSTRACT

Impaired angiogenesis is a major clinical problem and affects wound healing especially in diabetic patients. Improving angiogenesis is a reasonable strategy to increase diabetes-impaired wound healing. Recently, our lab described a system of transient gene expression due to pegylated poly-l-lysine (PLL-g-PEG) polymer-mediated plasmid DNA delivery in vitro. Here we synthesized peptide-modified PLL-g-PEG polymers with two functionalities, characterized them in vitro and utilized them in vivo via a fibrin-based delivery matrix to induce dermal wound angiogenesis in diabetic rats. The two peptides were 1) a TG-peptide to covalently bind these nanocondensates to the fibrin matrix (TG-peptide) for a sustained release and 2) a polyR peptide to improve cellular uptake of these nanocondensates. In order to induce angiogenesis in vivo we condensed modified and non-modified polymers with plasmid DNA encoding a truncated form of the therapeutic candidate gene hypoxia-inducible transcription factor 1α (HIF-1α). HIF-1α is the primarily oxygen-dependent regulated subunit of the heterodimeric transcription factor HIF-1, which controls angiogenesis among other physiological pathways. The truncated form of HIF-1α lacks the oxygen-dependent degradation domain (ODD) and therefore escapes degradation under normoxic conditions. PLL-g-PEG polymer-mediated HIF-1α-ΔODD plasmid DNA delivery was found to lead to a transiently induced gene expression of angiogenesis-related genes Acta2 and Pecam1 as well as the HIF-1α target gene Vegf in vivo. Furthermore, HIF-1α gene delivery was shown to enhance the number endothelial cells and smooth muscle cells - precursors for mature blood vessels - during wound healing. We show that - depending on the selection of the therapeutic target gene - PLL-g-PEG nanocondensates are a promising alternative to viral DNA delivery approaches, which might pose a risk to health.


Subject(s)
DNA/metabolism , Diabetes Mellitus, Experimental/therapy , Gene Transfer Techniques , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Neovascularization, Physiologic , Plasmids/metabolism , Polyethylene Glycols/chemistry , Polylysine/analogs & derivatives , Amino Acid Sequence , Animals , COS Cells , Capillaries/metabolism , Capillaries/pathology , Chlorocebus aethiops , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/therapy , Fibrin/metabolism , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/therapeutic use , Molecular Sequence Data , Polylysine/chemistry , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Wound Healing
19.
Invest Ophthalmol Vis Sci ; 52(8): 5872-80, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21447692

ABSTRACT

PURPOSE: Hypoxic preconditioning activates hypoxia-inducible transcription factors (HIFs) in the retina and protects photoreceptors from light-induced retinal degeneration. The authors tested whether photoreceptor-specific activation of HIFs in normoxia is sufficient for protection. METHODS: Rod-specific Vhl knockdown mice were generated using the Cre-lox system with the rod opsin promoter controlling expression of CRE recombinase to stabilize HIF transcription factors in normoxic rods. Cell death was induced by light exposure and quantified by ELISA. Rhodopsin was quantified by spectrophotometry. Gene expression was analyzed by real-time PCR, and levels of proteins were determined by Western blotting. Morphology was investigated by light microscopy and retinal function tested by ERG. RESULTS: The rod-specific Vhl knockdown stabilized HIF-α proteins and induced expression of HIF target genes in retinas of 10-week-old mice under normoxic conditions. Retinal morphology and function were normal. At 36 hours after exposure to excessive light, Vhl knockdowns showed significantly less photoreceptor cell death than did wild-type controls. Ten days after light exposure, however, photoreceptor degeneration in Vhl knockdowns was similar to that of control animals. Vhl knockdowns expressed Fgf2 at higher basal levels before light exposure. After light exposure, however, expression of Fgf2 was not significantly different from that of wild-type controls. CONCLUSIONS: Artificial activation of HIF transcription factors in normoxic photoreceptors results in an increased basal expression of Fgf2 that may contribute to a transient protection of rods against light damage. Full photoreceptor protection may require a hypoxia-like response in additional retinal cell types and/or the differential regulation of additional mechanisms.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Retinal Degeneration/physiopathology , Retinal Rod Photoreceptor Cells , Transcription Factors/metabolism , Aging/pathology , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Cell Death/physiology , Cell Death/radiation effects , Female , Fibroblast Growth Factor 2/genetics , Genotype , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Ischemic Preconditioning , Light/adverse effects , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/radiation effects , Transcription Factors/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
20.
Invest Ophthalmol Vis Sci ; 52(5): 2109-17, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21212189

ABSTRACT

PURPOSE: HIF1A is one of the major transcription factors that regulate tissue response to low oxygen tension. It controls expression of a large number of genes involved in cell survival, proliferation, angiogenesis, and other cellular processes. HIF1A is present at increased levels in the early postnatal retina. In this study its potential function during postnatal development of the mouse retina and retinal vasculature was analyzed. METHODS: A mouse line was generated with a Cre-mediated Hif1a knockdown in the peripheral retina. Retinal morphology and vasculature were analyzed in sections and flat mount preparations. Gene and protein expression were determined by real-time PCR and Western blot analysis. RESULTS: The Cre-mediated knockdown caused a significant reduction in Hif1a gene expression and HIF1A protein levels in the early postnatal retina. Retinal morphology was normal but the Hif1a knockdown prevented the formation of the intermediate vascular plexus in the peripheral retina. The primary plexus and the outer plexus were less affected. The Hif1a knockdown did not affect expression of such angiogenesis-related genes as vascular endothelial growth factor (Vegf) but strongly induced expression of erythropoietin (Epo). At the protein level, EPAS1 (HIF2A) was stabilized in the Hif1a knockdown mice. CONCLUSIONS: The results suggest that HIF1A may be directly or indirectly required for normal development of the retinal vasculature, especially of the intermediate plexus. EPO but not VEGF may play a significant role in the development of this phenotype. HIF1A may not be the main factor that regulates Vegf expression during retinal development in the mouse.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Neovascularization, Physiologic/physiology , Retinal Vessels/growth & development , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Blotting, Western , DNA Primers/chemistry , Down-Regulation , Erythropoietin/genetics , Fluorescent Antibody Technique, Indirect , Mice , Mice, Knockout , Retinal Vessels/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...