Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Biomed Mater Res A ; 112(9): 1424-1435, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38465895

ABSTRACT

Currently available focal knee resurfacing implants (FKRIs) are fully or partially composed of metals, which show a large disparity in elastic modulus relative to bone and cartilage tissue. Although titanium is known for its excellent osseointegration, the application in FKRIs can lead to potential stress-shielding and metal implants can cause degeneration of the opposing articulating cartilage due to the high resulting contact stresses. Furthermore, metal implants do not allow for follow-up using magnetic resonance imaging (MRI).To overcome the drawbacks of using metal based FKRIs, a biomimetic and MRI compatible bi-layered non-resorbable thermoplastic polycarbonate-urethane (PCU)-based FKRI was developed. The objective of this preclinical study was to evaluate the mechanical properties, biocompatibility and osteoconduction of a novel Bionate® 75D - zirconium oxide (B75D-ZrO2) composite material in vitro and the osseointegration of a B75D-ZrO2 composite stem PCU implant in a caprine animal model. The tensile strength and elastic modulus of the B75D-ZrO2 composite were characterized through in vitro mechanical tests under ambient and physiological conditions. In vitro biocompatibility and osteoconductivity were evaluated by exposing human mesenchymal stem cells to the B75D-ZrO2 composite and culturing the cells under osteogenic conditions. Cell activity and mineralization were assessed and compared to Bionate® 75D (B75D) and titanium disks. The in vivo osseointegration of implants containing a B75D-ZrO2 stem was compared to implants with a B75D stem and titanium stem in a caprine large animal model. After a follow-up of 6 months, bone histomorphometry was performed to assess the bone-to-implant contact area (BIC). Mechanical testing showed that the B75D-ZrO2 composite material possesses an elastic modulus in the range of the elastic modulus reported for trabecular bone. The B75D-ZrO2 composite material facilitated cell mediated mineralization to a comparable extent as titanium. A significantly higher bone-to-implant contact (BIC) score was observed in the B75D-ZrO2 implants compared to the B75D implants. The BIC of B75D-ZrO2 implants was not significantly different compared to titanium implants. A biocompatible B75D-ZrO2 composite approximating the elastic modulus of trabecular bone was developed by compounding B75D with zirconium oxide. In vivo evaluation showed an significant increase of osseointegration for B75D-ZrO2 composite stem implants compared to B75D polymer stem PCU implants. The osseointegration of B75D-ZrO2 composite stem PCU implants was not significantly different in comparison to analogous titanium stem metal implants.


Subject(s)
Materials Testing , Osseointegration , Polycarboxylate Cement , Urethane , Zirconium , Zirconium/chemistry , Zirconium/pharmacology , Animals , Osseointegration/drug effects , Urethane/chemistry , Polycarboxylate Cement/chemistry , Knee Prosthesis , Humans , Goats , Biocompatible Materials/chemistry , Mesenchymal Stem Cells/cytology
2.
ACS Biomater Sci Eng ; 9(7): 3796-3809, 2023 07 10.
Article in English | MEDLINE | ID: mdl-34251181

ABSTRACT

Elastin is a structural protein with outstanding mechanical properties (e.g., elasticity and resilience) and biologically relevant functions (e.g., triggering responses like cell adhesion or chemotaxis). It is formed from its precursor tropoelastin, a 60-72 kDa water-soluble and temperature-responsive protein that coacervates at physiological temperature, undergoing a phenomenon termed lower critical solution temperature (LCST). Inspired by this behavior, many scientists and engineers are developing recombinantly produced elastin-inspired biopolymers, usually termed elastin-like polypeptides (ELPs). These ELPs are generally comprised of repetitive motifs with the sequence VPGXG, which corresponds to repeats of a small part of the tropoelastin sequence, X being any amino acid except proline. ELPs display LCST and mechanical properties similar to tropoelastin, which renders them promising candidates for the development of elastic and stimuli-responsive protein-based materials. Unveiling the structure-property relationships of ELPs can aid in the development of these materials by establishing the connections between the ELP amino acid sequence and the macroscopic properties of the materials. Here we present a review of the structure-property relationships of ELPs and ELP-based materials, with a focus on LCST and mechanical properties and how experimental and computational studies have aided in their understanding.


Subject(s)
Peptides , Tropoelastin , Tropoelastin/genetics , Peptides/genetics , Peptides/chemistry , Amino Acid Sequence , Temperature
3.
Biomacromolecules ; 24(1): 489-501, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36516874

ABSTRACT

The biofabrication of structural proteins with controllable properties via amino acid sequence design is interesting for biomedicine and biotechnology, yet a complete framework that connects amino acid sequence to material properties is unavailable, despite great progress to establish design rules for synthesizing peptides and proteins with specific conformations (e.g., unfolded, helical, ß-sheets, or ß-turns) and intermolecular interactions (e.g., amphipathic peptides or hydrophobic domains). Molecular dynamics (MD) simulations can help in developing such a framework, but the lack of a standardized way of interpreting the outcome of these simulations hinders their predictive value for the design of de novo structural proteins. To address this, we developed a model that unambiguously classifies a library of de novo elastin-like polypeptides (ELPs) with varying numbers and locations of hydrophobic/hydrophilic and physical/chemical-cross-linking blocks according to their thermoresponsiveness at physiological temperature. Our approach does not require long simulation times or advanced sampling methods. Instead, we apply (un)supervised data analysis methods to a data set of molecular properties from relatively short MD simulations (150 ns). We also experimentally investigate hydrogels of those ELPs from the library predicted to be thermoresponsive, revealing several handles to tune their mechanical and structural properties: chain hydrophilicity/hydrophobicity or block distribution control the viscoelasticity and thermoresponsiveness, whereas ELP concentration defines the network permeability. Our findings provide an avenue to accelerate the design of de novo ELPs with bespoke phase behavior and material properties.


Subject(s)
Elastin , Hydrogels , Elastin/chemistry , Peptides/chemistry , Amino Acid Sequence , Temperature
4.
J Orthop Res ; 40(10): 2402-2413, 2022 10.
Article in English | MEDLINE | ID: mdl-35128715

ABSTRACT

The clinical success of osteochondral implants depends significantly on their surface properties. In vivo, an implant may roughen over time which can decrease its performance. The present study investigates whether changes in the surface texture of metal and two types of polycarbonate urethane (PCU) focal knee resurfacing implants (FKRIs) occurred after 6 and 12 months of in vivo articulation with native goat cartilage. PCU implants which differed in stem stiffness were compared to investigate whether the stem fixating the implant in the bone influences surface topography. Using optical profilometry, 19 surface texture parameters were evaluated, including spatial distribution and functional parameters obtained from the material ratio curve. For metal implants, wear during in vivo articulation occurred mainly via material removal, as shown by the significant decrease of the core-valley transition from 91.5% in unused implants to 90% and 89.6% after 6 and 12 months, respectively. Conversely, for PCU implants, the wear mechanism consisted in either filling of the valleys or flattening of the surface by dulling of sharp peaks. This was illustrated in the change in roughness skewness from negative to positive values over 12 months of in vivo articulation. Implants with a softer stem experienced the most deformation, shown by the largest change in material ratio curve parameters. We therefore showed, using a detailed surface profilometry analysis, that the surface texture of metal and two different PCU FKRIs changes in a different way after articulation against cartilage, revealing distinct wear mechanisms of different implant materials.


Subject(s)
Goats , Knee Prosthesis , Animals , Surface Properties , Urethane
5.
Pharmaceutics ; 13(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34452138

ABSTRACT

Back pain affects millions globally and in 40% of the cases is attributed to intervertebral disc degeneration. Oral analgesics are associated with adverse systemic side-effects and insufficient pain relief. Local drug delivery mitigates systemic effects and accomplishes higher local dosing. Clinical efficacy of intradiscally injected celecoxib (CXB)-loaded polyesteramide microspheres (PEAMs) was studied in a randomized prospective double-blinded placebo controlled veterinary study. Client-owned dog patients suffering from back pain were treated with CXB-loaded (n = 20) or unloaded PEAMs ("placebo") (n = 10) and evaluated by clinical examination, gait analysis, owners' questionnaires, and MRI at 6 and 12 weeks follow-up. At 6 and 12 weeks, CXB-treated dogs experienced significantly less pain interference with their daily life activities compared to placebo. The risk ratio for treatment success was 1.90 (95% C.I. 1.24-2.91, p = 0.023) at week 6 and 1.95 (95% C.I. 1.10-3.45, p = 0.036) at week 12. The beneficial effects of CXB-PEAMs were more pronounced for the subpopulation of male dogs and those with no Modic changes in MRI at inclusion in the study; disc protrusion did not affect the outcome. It remains to be determined whether intradiscal injection of CXB-PEAMs, in addition to analgesic properties, has the ability to halt the degenerative process in the long term or restore the disc.

6.
J Biomed Mater Res B Appl Biomater ; 108(8): 3370-3382, 2020 11.
Article in English | MEDLINE | ID: mdl-32614486

ABSTRACT

Focal knee resurfacing implants (FKRIs) are intended to treat cartilage defects in middle-aged patients. Most FKRIs are metal-based, which hampers follow-up of the joint using magnetic resonance imaging and potentially leads to damage of the opposing cartilage. The purpose of this study was to develop a nondegradable thermoplastic polyurethane (TPU) FKRI and investigate its osseointegration. Different surface roughness modifications and biphasic calcium phosphate (BCP) coating densities were first tested in vitro on TPU discs. The in vivo osseointegration of BCP-coated TPU implants was subsequently compared to uncoated TPU implants and the titanium bottom layer of metal control implants in a caprine model. Implants were implanted bilaterally in stifle joints and animals were followed for 12 weeks, after which the bone-to-implant contact area (BIC) was assessed. Additionally, 18F-sodium-fluoride (18F-NaF) positron emission tomography PET/CT-scans were obtained at 3 and 12 weeks to visualize the bone metabolism over time. The BIC was significantly higher for the BCP-coated TPU implants compared to the uncoated TPU implants (p = .03), and did not significantly differ from titanium (p = .68). Similar 18F-NaF tracer uptake patterns were observed between 3 and 12 weeks for the BCP-coated TPU and titanium implants, but not for the uncoated implants. TPU FKRIs with surface modifications could provide the answer to the drawbacks of metal FKRIs.


Subject(s)
Coated Materials, Biocompatible/chemistry , Hydroxyapatites/chemistry , Knee/surgery , Osseointegration , Polyurethanes/chemistry , Prostheses and Implants , Animals , Calcification, Physiologic , Cells, Cultured , Fluorine Radioisotopes , Goats , Humans , Knee Prosthesis , Mesenchymal Stem Cells , Positron Emission Tomography Computed Tomography , Sodium Fluoride , Surface Properties , Titanium
7.
Polymers (Basel) ; 8(6)2016 Jun 04.
Article in English | MEDLINE | ID: mdl-30979313

ABSTRACT

Cartilage defects in the knee are often seen in young and active patients. There is a need for effective joint preserving treatments in patients suffering from cartilage defects, as untreated defects often lead to osteoarthritis. Within the last two decades, tissue engineering based techniques using a wide variety of polymers, cell sources, and signaling molecules have been evaluated. We start this review with basic background information on cartilage structure, its intrinsic repair, and an overview of the cartilage repair treatments from a historical perspective. Next, we thoroughly discuss polymer construct components and their current use in commercially available constructs. Finally, we provide an in-depth discussion about construct considerations such as degradation rates, cell sources, mechanical properties, joint homeostasis, and non-degradable/hybrid resurfacing techniques. As future prospects in cartilage repair, we foresee developments in three areas: first, further optimization of degradable scaffolds towards more biomimetic grafts and improved joint environment. Second, we predict that patient-specific non-degradable resurfacing implants will become increasingly applied and will provide a feasible treatment for older patients or failed regenerative treatments. Third, we foresee an increase of interest in hybrid construct, which combines degradable with non-degradable materials.

8.
J Biotechnol ; 179: 32-41, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24667538

ABSTRACT

Antibodies, such as IgGs, are widely applied as detection probes, purification ligands and targeting moieties in research and medicine. Protein A from Staphylococcus aureus is capable of selectively binding to antibodies. Z33, a 33 amino acid peptide sequence derived from Protein A, is a minimized binding domain with comparable interaction potential. This peptide was fused to two different proteins without perturbing the properties of both the protein and the Z33-domain. The thermodynamic parameters for the interaction of the fusion proteins with antibodies from various species were determined by isothermal titration calorimetry. This showed that binding was enthalpically driven and entropically unfavorable. A difference in Z33 binding affinity of several orders of magnitude was observed between human and bovine antibodies. This selectivity toward human IgGs was utilized for the efficient and selective purification of human IgGs from mixtures containing bovine IgGs and other proteins by affinity precipitation employing a fusion protein of Z33 and a stimulus-responsive elastin-like polypeptide.


Subject(s)
Immunoglobulin G/metabolism , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/metabolism , Animals , Binding Sites , Cattle , Elastin/metabolism , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Models, Molecular , Recombinant Fusion Proteins/metabolism , Staphylococcal Protein A/immunology , Thermodynamics
9.
Chem Commun (Camb) ; (19): 2230-2, 2008 May 21.
Article in English | MEDLINE | ID: mdl-18463749

ABSTRACT

Binary mixtures of well-defined, stimuli-responsive elastin-based side-chain polymers show a single transition temperature that depends on blend composition.


Subject(s)
Elastin/chemistry , Oligopeptides/chemistry , Polymethacrylic Acids/chemistry , Molecular Conformation , Nephelometry and Turbidimetry , Temperature
10.
Nat Nanotechnol ; 2(4): 226-9, 2007 Apr.
Article in English | MEDLINE | ID: mdl-18654267

ABSTRACT

Virus particles are probably the most precisely defined nanometre-sized objects that can be formed by protein self-assembly. Although their natural function is the storage and transport of genetic material, they have more recently been applied as scaffolds for mineralization and as containers for the encapsulation of inorganic compounds. The reproductive power of viruses has been used to develop versatile analytical methods, such as phage display, for the selection and identification of (bio)active compounds. To date, the combined use of self-assembly and reproduction has not been used for the construction of catalytic systems. Here we describe a self-assembled system based on a plant virus that has its coat protein genetically modified to provide it with a lipase enzyme. Using single-object and bulk catalytic studies, we prove that the virus-anchored lipase molecules are catalytically active. This anchored biocatalyst, unlike man-made supported catalysts, has the capability to reproduce itself in vivo, generating many independent catalytically active copies.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Virion/chemistry , Virion/ultrastructure , Catalysis , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...