Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 107(6): 1829-1838, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36415895

ABSTRACT

Septoria leaf spot (SLS) affects stevia leaves, reducing their quality. Estimates of SLS severity on different genotypes are made to identify resistance and as a basis to compare management approaches. The use of standard area diagrams (SADs) can improve the accuracy and reliability of severity estimates. In this study, we developed new SADs with six illustrations (0.5, 1, 10, 25, 40, and 75% severity). The SADs were validated by raters with and without experience in estimating SLS. Raters evaluated 40 leaf photos with SLS severities ranging from 0 to 100% without and with the SADs. Agreement (ρc), bias (Cb), precision (r), and intracluster correlation (ρ) coefficients were significantly closer to "true" severity values when the SADs was used by inexperienced (ρc = 0.89; Cb = 0.97; r = 0.90, ρ = 0.81) and experienced (ρc = 0.94; Cb = 0.99; r = 0.95, ρ = 0.91) raters. The SADs were tested under field conditions in Paraguay, Mexico, and the United States, with inexperienced raters assigned to two groups, one SADs trained and the other not trained, that estimated SLS severity three times: first, all raters without SADs and no time limit for the estimates; second, only the SADs-trained group used SADs and no time limit; and third, only the SADs-trained group used SADs, with a time limit of 10 s imposed per specimen assessment. Agreement and reliability of SLS severity estimates significantly improved when raters used the SADs without a time limit. The use of the new SADs improved the accuracy, precision, and reliability of SLS severity estimates, enhancing the uniformity in assessment across different stevia programs.


Subject(s)
Ascomycota , Stevia , United States , Mexico , Reproducibility of Results , Paraguay , Ascomycota/genetics
2.
Plant Dis ; 106(8): 2228-2238, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34978874

ABSTRACT

Meta-analysis was used to compare yield protection and nematode suppression provided by two seed-applied and two soil-applied nematicides against Meloidogyne incognita and Rotylenchulus reniformis on cotton across 3 years and several trial locations in the U.S. Cotton Belt. Nematicides consisted of thiodicarb- and fluopyram-treated seed, aldicarb and fluopyram applied in furrow, and combinations of the seed treatments and soil-applied fluopyram. The nematicides had no effect on nematode reproduction or root infection but had a significant impact on seed cotton yield response ([Formula: see text]), with an average increase of 176 and 197 kg/ha relative to the nontreated control in M. incognita and R. reniformis infested fields, respectively. However, because of significant variation in yield protection and nematode suppression by nematicides, five or six moderator variables (cultivar resistance [M. incognita only], nematode infestation level, nematicide treatment, application method, trial location, and growing season) were used depending on nematode species. In M. incognita-infested fields, greater yield protection was observed with nematicides applied in furrow and with seed-applied + in-furrow than with solo seed-applied nematicide applications. Most notable of these in-furrow nematicides were aldicarb and fluopyram (>131 g/ha) with or without a seed-applied nematicide compared with thiodicarb. In R. reniformis-infested fields, moderator variables provided no further explanation of the variation in yield response produced by nematicides. Furthermore, moderator variables provided little explanation of the variation in nematode suppression by nematicides in M. incognita- and R. reniformis-infested fields. The limited explanation by the moderator variables on the field efficacy of nematicides in M. incognita- and R. reniformis-infested fields demonstrates the difficulty of managing these pathogens with nonfumigant nematicides across the U.S. Cotton Belt.


Subject(s)
Antinematodal Agents , Tylenchoidea , Aldicarb/toxicity , Animals , Antinematodal Agents/toxicity , Benzamides/toxicity , Gossypium , Pyridines/toxicity , Seeds , Soil , Tylenchoidea/drug effects , Tylenchoidea/physiology , United States
3.
Plant Dis ; 104(4): 1167-1174, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32053475

ABSTRACT

Grape powdery mildew (GPM) fungicide programs consist of 5 to 15 applications, depending on region or market, in an attempt to achieve the high fruit quality standards demanded by the market. Understanding how fungicides redistribute and targeting redistributing fungicide to critical crop phenological stages could improve fungicide protection of grape clusters. This study evaluated fungicide redistribution in grapevines from major fungicide groups labeled for GPM control. Translaminar and xylem redistribution was examined by placing fungicide-impregnated filter disks on the adaxial or abaxial leaf surface of detached leaves for 10 min and then incubating for 48 h before inoculating the abaxial surface with conidia. Vapor redistribution used Teflon disks sprayed with fungicides and placed on the abaxial leaf surface of detached leaves 48 h before inoculation. Disease development was rated 10 days later. Translaminar movement through calyptra was tested using flowering potted vines. All fungicides tested redistributed through at least one mechanism. Fungicide timing at critical phenological stages (early, mid, and late bloom) was assessed in small plots of cultivar Pinot noir vines. The application of trifloxystrobin, quinoxyfen, or fluopyram at different bloom stages showed that applications initiated at end of bloom resulted in the lowest berry infection probabilities of 0.073, 0.097, and 0.020, respectively. The results of this study suggest that integrating two carefully timed applications of redistributing fungicides initiated at end of bloom into a fungicide program may be an effective strategy for wine grape growers in western Oregon to produce fruit with low GPM infection.


Subject(s)
Ascomycota , Fungicides, Industrial , Vitis , Oregon , Plant Diseases
4.
PeerJ ; 6: e4639, 2018.
Article in English | MEDLINE | ID: mdl-29692952

ABSTRACT

Plant pathogen detection systems have been useful tools to monitor inoculum presence and initiate management schedules. More recently, a loop-mediated isothermal amplification (LAMP) assay was successfully designed for field use in the grape powdery mildew pathosystem; however, false negatives or false positives were prevalent in grower-conducted assays due to the difficulty in perceiving the magnesium pyrophosphate precipitate at low DNA concentrations. A quantitative LAMP (qLAMP) assay using a fluorescence resonance energy transfer-based probe was assessed by grape growers in the Willamette Valley of Oregon. Custom impaction spore samplers were placed at a research vineyard and six commercial vineyard locations, and were tested bi-weekly by the lab and by growers. Grower-conducted qLAMP assays used a beta-version of the Smart-DART handheld LAMP reaction devices (Diagenetix, Inc., Honolulu, HI, USA), connected to Android 4.4 enabled, Bluetooth-capable Nexus 7 tablets for output. Quantification by a quantitative PCR assay was assumed correct to compare the lab and grower qLAMP assay quantification. Growers were able to conduct and interpret qLAMP results; however, the Erysiphe necator inoculum quantification was unreliable using the beta-Smart-DART devices. The qLAMP assay developed was sensitive to one spore in early testing of the assay, but decreased to >20 spores by the end of the trial. The qLAMP assay is not likely a suitable management tool for grape powdery mildew due to losses in sensitivity and decreasing costs and portability for other, more reliable molecular tools.

SELECTION OF CITATIONS
SEARCH DETAIL
...