Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 43(9): 3443-52, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24390601

ABSTRACT

Metal oxides were found to dissolve in different imidazolium ionic liquids with a hydrogen atom in the C2 position of the imidazolium ring, but not if a methyl substituent was present in the C2 position. The crystal structure of the product that crystallised from an ionic liquid containing dissolved silver(i) oxide showed that this was a silver(i) carbene complex. The presence of carbenes in solution was proven by (13)C NMR spectroscopy and the reactions were also monitored by Raman spectroscopy. The dissolution of other metal oxides, namely copper(ii) oxide, zinc(ii) oxide and nickel(ii) oxide, was also studied in imidazolium ionic liquids and it was found that stable zinc(ii) carbenes were formed in solution, but these did not crystallise under the given experimental conditions. A crystalline nickel(ii) carbene complex could be obtained from a solution of nickel(ii) chloride dissolved in a mixture of 1-butyl-3-methylimidazolium and 1-ethyl-3-methylimidazolium acetate.

2.
Phys Chem Chem Phys ; 15(24): 9663-9, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23665857

ABSTRACT

The proof-of-principle for the separation of metals by solvent extraction using two mutually immiscible ionic liquids is given. Cobalt was extracted from the ionic liquid 1-ethyl-3-methylimidazolium chloride to the ionic liquid trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate. A distribution ratio of 44 was obtained. Cobalt could be selectively separated from nickel, with a separation factor of 207. The extraction mechanism was elucidated using UV-VIS absorption measurements. The mutual solubility between the two ionic liquids was determined by (1)H NMR. Processing steps such as washing, stripping and regeneration of the ionic liquid phases are discussed.

3.
Inorg Chem ; 49(7): 3351-60, 2010 Apr 05.
Article in English | MEDLINE | ID: mdl-20184304

ABSTRACT

Uranium(VI) oxide has been dissolved in three different ionic liquids functionalized with a carboxyl group: betainium bis[(trifluoromethyl)sulfonyl]imide, 1-(carboxymethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and N-(carboxymethyl)-N-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide. The dissolution process results in the formation of uranyl complexes with zwitterionic carboxylate ligands and bis[(trifluoromethyl)sulfonyl]imide (bistriflimide) counterions. An X-ray diffraction study on single crystals of the uranyl complexes revealed that the crystal structure strongly depends on the cationic core appended to the carboxylate groups. The betainium ionic liquid gives a dimeric uranyl complex, the imidazolium ionic liquid a monomeric complex, and the pyrrolidinium ionic liquid a one-dimensional polymeric uranyl complex. Extended X-ray absorption fine structure measurements have been performed on the betainium uranyl complex. The absorption and luminescence spectra of the uranyl betainium complex have been studied in the solid state and dissolved in water, in acetonitrile, and in the ionic liquid betainium bistriflimide. The carboxylate groups remain coordinated to uranyl in acetonitrile and in betainium bistriflimide but not in water.

4.
Chemistry ; 16(6): 1849-58, 2010 Feb 08.
Article in English | MEDLINE | ID: mdl-19967730

ABSTRACT

A series of nitrile-functionalized ionic liquids were found to exhibit temperature-dependent miscibility (thermomorphism) with the lower alcohols. Their coordinating abilities toward cobalt(II) ions were investigated through the dissolution process of cobalt(II) bis(trifluoromethylsulfonyl)imide and were found to depend on the donor abilities of the nitrile group. The crystal structures of the cobalt(II) solvates [Co(C(1)C(1CN)Pyr)(2)(Tf(2)N)(4)] and [Co(C(1)C(2CN)Pyr)(6)][Tf(2)N](8), which were isolated from ionic-liquid solutions, gave an insight into the coordination chemistry of functionalized ionic liquids. Smooth layers of cobalt metal could be obtained by electrodeposition of the cobalt-containing ionic liquids.

5.
J Phys Chem B ; 113(5): 1429-37, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19133739

ABSTRACT

The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point=30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility properties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). 1H NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G+/G-. These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.

6.
Chemistry ; 15(6): 1449-61, 2009.
Article in English | MEDLINE | ID: mdl-19123214

ABSTRACT

The dissolution process of metal complexes in ionic liquids was investigated by a multiple-technique approach to reveal the solvate species of the metal in solution. The task-specific ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf(2)N]) is able to dissolve stoichiometric amounts of the oxides of the rare-earth elements. The crystal structures of the compounds [Eu(2)(bet)(8)(H(2)O)(4)][Tf(2)N](6), [Eu(2)(bet)(8)(H(2)O)(2)][Tf(2)N](6) x 2 H(2)O, and [Y(2)(bet)(6)(H(2)O)(4)][Tf(2)N](6) were found to consist of dimers. These rare-earth complexes are well soluble in the ionic liquids [Hbet][Tf(2)N] and [C(4)mim][Tf(2)N] (C(4)mim = 1-butyl-3-methylimidazolium). The speciation of the metal complexes after dissolution in these ionic liquids was investigated by luminescence spectroscopy, (1)H, (13)C, and (89)Y NMR spectroscopy, and by the synchrotron techniques EXAFS (extended X-ray absorption fine structure) and HEXS (high-energy X-ray scattering). The combination of these complementary analytical techniques reveals that the cationic dimers decompose into monomers after dissolution of the complexes in the ionic liquids. Deeper insight into the solution processes of metal compounds is desirable for applications of ionic liquids in the field of electrochemistry, catalysis, and materials chemistry.

7.
ChemSusChem ; 1(12): 997-1005, 2008.
Article in English | MEDLINE | ID: mdl-19040254

ABSTRACT

The palladium-catalyzed hydrogenolysis of aromatic ketones to alkylbenzenes was studied in mixtures of ionic liquids to explore the promotional effect of these reaction media. Choline-based ionic liquids displayed complete miscibility with the aromatic ketone substrate at reaction temperature and a clear phase separation of the derived alkylbenzene product at room temperature. Selected ionic liquids were then assessed as reaction media in the hydrogenolysis of aromatic ketones over palladium catalysts. A binary mixture of choline and betainium bis(trifluoromethylsulfonyl)imide ionic liquids resulted in the highest conversion and selectivity values in the hydrogenolysis of acetophenone. At the end of the reaction, the immiscible alkylbenzene separates from the ionic liquid mixture and the pure product phase can be isolated by simple decantation. After optimization of the reaction conditions, high yields (>90 %) of alkylbenzene were obtained in all cases. The catalyst and the ionic liquid could be used at least three times without any loss of activity or selectivity.


Subject(s)
Betaine/analogs & derivatives , Choline/chemistry , Complex Mixtures/chemistry , Hydrogen/chemistry , Ionic Liquids/chemistry , Ketones/chemistry , Benzene/chemistry , Betaine/chemistry , Catalysis , Hydrogen-Ion Concentration , Palladium/chemistry
8.
Inorg Chem ; 47(21): 9987-99, 2008 Nov 03.
Article in English | MEDLINE | ID: mdl-18841931

ABSTRACT

Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethylsulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with water at elevated temperatures. Phase separation occurs upon cooling. This thermomorphic behavior has been investigated by (1)H NMR, and it was found that it can be attributed to the temperature-dependent hydration and hydrogen-bond formation of the ionic liquid components. The crystal structures of four ionic liquids and five metal complexes have been determined.

9.
J Chem Phys ; 128(6): 064509, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18282058

ABSTRACT

The electrical conductivities of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and of 1-hexyl-3-methylimidazolium ionic liquids with different anions were determined in the temperature range between 123 and 393 K on the basis of dielectric measurements in the frequency range from 1 to 10(7) Hz. Most of the ionic liquids form a glass and the conductivity values obey the Vogel-Fulcher-Tammann equation. The glass transition temperatures are increasing with increasing length of the alkyl chain. The fragility is weakly dependent on the alkyl chain length but is highly sensitive to the structure of the anion.


Subject(s)
Alkanes/chemistry , Boric Acids/chemistry , Electric Conductivity , Imidazoles/chemistry , Ionic Liquids/chemistry , Temperature , Borates , Sensitivity and Specificity
10.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 7): m945, 2008 Jun 21.
Article in English | MEDLINE | ID: mdl-21202797

ABSTRACT

The crystal structure of the title compound, (C(6)H(11)N(2))(3)[EuBr(6)], consists of 1-ethyl-3-methyl-imidazolium cations and centrosymmetric octa-hedral hexa-bromido-europate anions. The [EuBr(6)](3-) anions are located at the corners and face-centres of the monoclinic unit cell. Characteristic hydrogen-bonding inter-actions can be observed between the bromide anions and the acidic H atoms of the imidazolium cations.

11.
J Phys Chem B ; 111(19): 5254-63, 2007 May 17.
Article in English | MEDLINE | ID: mdl-17444674

ABSTRACT

Choline saccharinate and choline acesulfamate are two examples of hydrophilic ionic liquids, which can be prepared from easily available starting materials (choline chloride and a non-nutritive sweetener). The (eco)toxicity of these ionic liquids in aqueous solution is very low in comparison to other types of ionic liquids. A general method for the synthesis and purification of hydrophilic ionic liquids is presented. The method consists of a silver-free metathesis reaction, followed by purification of the ionic liquid by ion-exchange chromatography. The crystal structures show a marked difference in hydrogen bonding between the two ionic liquids, although the saccharinate and the acesulfamate anions show structural similarities. The optimized structures, the energetics, and the charge distribution of cation-anion pairs in the ionic liquids were studied by density functional theory (DFT) and second-order (Møller-Plesset) perturbation theory calculations. The occupation of the non-Lewis orbitals was considered to obtain a qualitative picture of the Lewis structures. The calculated interaction energies and the dipole moments for the ion pairs in the gas phase were discussed.

12.
J Phys Chem B ; 110(42): 20978-92, 2006 Oct 26.
Article in English | MEDLINE | ID: mdl-17048916

ABSTRACT

Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations.


Subject(s)
Ionic Liquids/chemistry , Metals, Heavy/chemistry , Oxides/chemistry , Conservation of Natural Resources , Hydrogen-Ion Concentration , Phase Transition , Solubility , Water
13.
J Am Chem Soc ; 128(42): 13658-9, 2006 Oct 25.
Article in English | MEDLINE | ID: mdl-17044672

ABSTRACT

The first examples of ionic liquids with rare-earth-containing anions are presented. These ionic liquids based on rare-earth thiocyanate complexes are liquid at room temperature, despite the multivalent character of the anionic building blocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...