Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 30(2): 023002, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29165321

ABSTRACT

Interface-dominated materials are commonly encountered in both science and technology, and typical examples include foams and emulsions. Conventionally stabilised by surfactants, emulsions can also be stabilised by micron-sized particles. These so-called Pickering-Ramsden (PR) emulsions have received substantial interest, as they are model arrested systems, rather ubiquitous in industry and promising templates for advanced materials. The mechanical properties of the particle-laden liquid-liquid interface, probed via interfacial rheology, have been shown to play an important role in the formation and stability of PR emulsions. However, the morphological processes which control the formation of emulsions and foams in mixing devices, such as deformation, break-up, and coalescence, are complex and diverse, making it difficult to identify the precise role of the interfacial rheological properties. Interestingly, the role of interfacial rheology in the stability of bicontinuous PR emulsions (bijels) has been virtually unexplored, even though the phase separation process which leads to the formation of these systems is relatively simple and the interfacial deformation processes can be better conceptualised. Hence, the aims of this topical review are twofold. First, we review the existing literature on the interfacial rheology of particle-laden liquid interfaces in rheometrical flows, focussing mainly on model latex suspensions consisting of polystyrene particles carrying sulfate groups, which have been most extensively studied to date. The goal of this part of the review is to identify the generic features of the rheology of such systems. Secondly, we will discuss the relevance of these results to the formation and stability of PR emulsions and bijels.

2.
Article in English | MEDLINE | ID: mdl-26465474

ABSTRACT

We demonstrate that the formation of bicontinuous emulsions stabilized by interfacial particles (bijels) is more robust when nanoparticles rather than microparticles are used. Emulsification via spinodal demixing in the presence of nearly neutrally wetting particles is induced by rapid heating. Using confocal microscopy, we show that nanospheres allow successful bijel formation at heating rates two orders of magnitude slower than is possible with microspheres. In order to explain our results, we introduce the concept of mechanical leeway, i.e., nanoparticles benefit from a smaller driving force towards disruptive curvature. Finally, we suggest that leeway mechanisms may benefit any formulation in which challenges arise due to tight restrictions on a pivotal parameter, but where the restrictions can be relaxed by rationally changing the value of a more accessible parameter.

3.
J Chem Phys ; 134(5): 054505, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21303136

ABSTRACT

Intermediate scattering functions are measured for colloidal hard sphere systems using both dynamic light scattering and x-ray photon correlation spectroscopy. We compare the techniques, and discuss the advantages and disadvantages of each. Both techniques agree in the overlapping range of scattering vectors. We investigate the scaling behavior found by Segré and Pusey [Phys. Rev. Lett. 77, 771 (1996)] but challenged by Lurio et al. [Phys. Rev. Lett. 84, 785 (2000)]. We observe a scaling behavior over several decades in time but not in the long-time regime. Moreover, we do not observe long-time diffusive regimes at scattering vectors away from the peak of the structure factor and so question the existence of long-time diffusion coefficients at these scattering vectors.

4.
Proc Natl Acad Sci U S A ; 106(38): 16063-7, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19805259

ABSTRACT

Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (approximately 0.002 k(B)T). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder.


Subject(s)
Colloids/chemistry , Sodium Chloride/chemistry , Crystallization , Electromagnetic Fields , Electrophoresis , Gravitation , Microscopy, Confocal , Models, Molecular , Molecular Structure , Particle Size , Silicon Dioxide/chemistry , Stress, Mechanical
5.
Opt Express ; 17(9): 6952-61, 2009 Apr 27.
Article in English | MEDLINE | ID: mdl-19399068

ABSTRACT

The photonic band diagrams of close-packed colloidal diamond and pyrochlore structures, have been studied using Korringa-Kohn-Rostoker (KKR) and plane-wave calculations. In addition, the occurrence of a band gap has been investigated for the binary Laves structures and their constituent large- and small-sphere substructures. It was recently shown that these Laves structures give the possibility to fabricate the diamond and pyrochlore structures by self-organization. The comparison of the two calculation methods opens the possibility to study the validity and the convergence of the results, which have been an issue for diamond-related structures in the past. The KKR calculations systematically give a lower value for the gap width than the plane-wave calculations. This difference can partly be ascribed to a convergence issue in the plane-wave code when a contact point of two spheres coincides with the grid.


Subject(s)
Algorithms , Crystallization/methods , Diamond/chemistry , Models, Chemical , Niobium/chemistry , Refractometry/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Photons , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...