Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787428

ABSTRACT

Multiparametric MRI is the optimal primary investigation when prostate cancer is suspected, and its ability to rule in and rule out clinically significant disease relies on high-quality anatomical and functional images. Avenues for achieving consistent high-quality acquisitions include meticulous patient preparation, scanner setup, optimised pulse sequences, personnel training, and artificial intelligence systems. The impact of these interventions on the final images needs to be quantified. The prostate imaging quality (PI-QUAL) scoring system was the first standardised quantification method that demonstrated the potential for clinical benefit by relating image quality to cancer detection ability by MRI. We present the updated version of PI-QUAL (PI-QUAL v2) which applies to prostate MRI performed with or without intravenous contrast medium using a simplified 3-point scale focused on critical technical and qualitative image parameters. CLINICAL RELEVANCE STATEMENT: High image quality is crucial for prostate MRI, and the updated version of the PI-QUAL score (PI-QUAL v2) aims to address the limitations of version 1. It is now applicable to both multiparametric MRI and MRI without intravenous contrast medium. KEY POINTS: High-quality images are essential for prostate cancer diagnosis and management using MRI. PI-QUAL v2 simplifies image assessment and expands its applicability to prostate MRI without contrast medium. PI-QUAL v2 focuses on critical technical and qualitative image parameters and emphasises T2-WI and DWI.

2.
Eur J Radiol ; 165: 110928, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37354769

ABSTRACT

PURPOSE: The guidelines for prostate cancer recommend the use of MRI in the prostate cancer pathway. Due to the variability in prostate MR image quality, the reliability of this technique in the detection of prostate cancer is highly variable in clinical practice. This leads to the need for an objective and automated assessment of image quality to ensure an adequate acquisition and hereby to improve the reliability of MRI. The aim of this study is to investigate the feasibility of Blind/referenceless image spatial quality evaluator (Brisque) and radiomics in automated image quality assessment of T2-weighted (T2W) images. METHOD: Anonymized axial T2W images from 140 patients were scored for quality using a five-point Likert scale (low, suboptimal, acceptable, good, very good quality) in consensus by two readers. Images were dichotomized into clinically acceptable (very good, good and acceptable quality images) and clinically unacceptable (low and suboptimal quality images) in order to train and verify the model. Radiomics and Brisque features were extracted from a central cuboid volume including the prostate. A reduced feature set was used to fit a Linear Discriminant Analysis (LDA) model to predict image quality. Two hundred times repeated 5-fold cross-validation was used to train the model and test performance by assessing the classification accuracy, the discrimination accuracy as receiver operating curve - area under curve (ROC-AUC), and by generating confusion matrices. RESULTS: Thirty-four images were classified as clinically unacceptable and 106 were classified as clinically acceptable. The accuracy of the independent test set (mean ± standard deviation) was 85.4 ± 5.5%. The ROC-AUC was 0.856 (0.851 - 0.861) (mean; 95% confidence interval). CONCLUSIONS: Radiomics AI can automatically detect a significant portion of T2W images of suboptimal image quality. This can help improve image quality at the time of acquisition, thus reducing repeat scans and improving diagnostic accuracy.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/diagnostic imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Linear Models , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...