Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 2(12): 1869-1875, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29164868

ABSTRACT

In this work, we present a dual-functional sensor that can perform surface-enhanced Raman spectroscopy (SERS) based identification and electrochemical (EC) quantification of analytes in liquid samples. A lithography-free reactive ion etching process was utilized to obtain nanostructures of high aspect ratios distributed homogeneously on a 4 in. fused silica wafer. The sensor was made up of three-electrode array, obtained by subsequent e-beam evaporation of Au on nanostructures in selected areas through a shadow mask. The SERS performance was evaluated through surface-averaged enhancement factor (EF), which was ∼6.2 × 105, and spatial uniformity of EF, which was ∼13% in terms of relative standard deviation. Excellent electrochemical performance and reproducibility were revealed by recording cyclic voltammograms. On nanostructured electrodes, paracetamol (PAR) showed an improved quasi-reversible behavior with decrease in peak potential separation (ΔEp ∼ 90 mV) and higher peak currents (Ipa/Ipc ∼ 1), compared to planar electrodes (ΔEp ∼ 560 mV). The oxidation potential of PAR was also lowered by ∼80 mV on nanostructured electrodes. To illustrate dual-functional sensing, quantitative evaluation of PAR ranging from 30 µM to 3 mM was realized through EC detection, and the presence of PAR was verified by its SERS fingerprint.


Subject(s)
Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Acetaminophen/analysis , Electrodes , Gold/chemistry , Oxidation-Reduction , Surface Properties
3.
Small ; 12(48): 6745-6752, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27709773

ABSTRACT

Tunable plasmonic platforms are important for a variety of applications such as photovoltaics, LED's, optoelectronics, medical research, and biosensors. In particular, development of label-free plasmonic biosensors is one of the key research areas that utilizes plasmonic nanostructures for detection of biologically relevant molecules at low concentrations. The authors have developed a cost-effective, fast, and lithography-free method to fabricate transparent fused silica nanocylinders. The technique allows tuning of nanocylinder height, diameter, and density and can be scaled to large surface areas, such as 8 in. wafers. The authors demonstrate that gold coated nanocylinders support localized surface plasmon resonances (LSPR) from visible to near infrared wavelengths. The plasmonic platform can be characterized as suspended gold nanorings and exhibits a sensitivity of 658 nm RIU-1 with a figure-of-merit of 10, comparable to other state-of-the-art LSPR sensing platforms that utilize more complex nanofabrication pathways. It was observed that the LSPR peak positions can be controlled by varying the geometry of the nanocylinders. The authors illustrate surface functionalization, biosensing, and surface regeneration properties of the platform using thiols and detection of bovine serum albumin (BSA). The observed LSPR shifts for 11-mercaptoundecanoic acid and BSA was 12 and 26 nm, respectively.


Subject(s)
Biosensing Techniques/methods , Gold/chemistry , Nanostructures/chemistry , Silicon Dioxide/chemistry , Surface Plasmon Resonance/methods
4.
Biomicrofluidics ; 5(3): 31101-311014, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22662026

ABSTRACT

A method of in situ chromosome immobilisation and DNA extraction in a microfluidic polymer chip was presented. Light-induced local heating was used to induce poly(N-isopropylacrylamide) phase transition in order to create a hydrogel and embed a single chromosome such that it was immobilised. This was achieved with the use of a near-infrared laser focused on an absorption layer integrated in the polymer chip in close proximity to the microchannel. It was possible to proceed to DNA extraction while holding on the chromosome at an arbitrary location by introducing protease K into the microchannel.

5.
Rev Sci Instrum ; 80(11): 115114, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19947764

ABSTRACT

We propose and describe a microfluidic system for high intensity x-ray measurements. The required open access to a microfluidic channel is provided by an out-of-plane capillary burst valve (CBV). The functionality of the out-of-plane CBV is characterized with respect to the diameter of the windowless access hole, ranging from 10 to 130 microm. Maximum driving pressures from 22 to 280 mbar corresponding to refresh rates of the exposed sample from 300 Hz to 54 kHz is demonstrated. The microfluidic system is tested at beamline ID09b at the ESRF synchrotron radiation facility in Grenoble, and x-ray scattering measurements are shown to be feasible and to require only very limited amounts of sample, <1 ml/h of measurements without recapturing of sample. With small adjustments of the present chip design, scattering angles up to 30 degrees can be achieved without shadowing effects and integration on-chip mixing and spectroscopy appears straightforward.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Equipment Design , Microscopy , Microtechnology , Water , X-Ray Diffraction , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...