Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 19(1): 104, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30115097

ABSTRACT

BACKGROUND: Recent improvements in DNA sequencing and genome scaffolding have paved the way to generate high-quality de novo assemblies of pseudomolecules representing complete chromosomes of wheat and its wild relatives. These assemblies form the basis to compare the dynamics of wheat genomes on a megabase scale. RESULTS: Here, we provide a comparative sequence analysis of the 700-megabase chromosome 2D between two bread wheat genotypes-the old landrace Chinese Spring and the elite Swiss spring wheat line 'CH Campala Lr22a'. Both chromosomes were assembled into megabase-sized scaffolds. There is a high degree of sequence conservation between the two chromosomes. Analysis of large structural variations reveals four large indels of more than 100 kb. Based on the molecular signatures at the breakpoints, unequal crossing over and double-strand break repair were identified as the molecular mechanisms that caused these indels. Three of the large indels affect copy number of NLRs, a gene family involved in plant immunity. Analysis of SNP density reveals four haploblocks of 4, 8, 9 and 48 Mb with a 35-fold increased SNP density compared to the rest of the chromosome. Gene content across the two chromosomes was highly conserved. Ninety-nine percent of the genic sequences were present in both genotypes and the fraction of unique genes ranged from 0.4 to 0.7%. CONCLUSIONS: This comparative analysis of two high-quality chromosome assemblies enabled a comprehensive assessment of large structural variations and gene content. The insight obtained from this analysis will form the basis of future wheat pan-genome studies.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant , Sequence Analysis, DNA , Triticum/genetics , Base Pairing/genetics , Crossing Over, Genetic , DNA Breaks, Double-Stranded , DNA Copy Number Variations/genetics , DNA Repair/genetics , Gene Flow , Genes, Plant , Haplotypes/genetics , Multigene Family , Polymorphism, Single Nucleotide/genetics , Sequence Deletion/genetics , Synteny/genetics
2.
Nat Biotechnol ; 35(8): 793-796, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28504667

ABSTRACT

Cereal crops such as wheat and maize have large repeat-rich genomes that make cloning of individual genes challenging. Moreover, gene order and gene sequences often differ substantially between cultivars of the same crop species. A major bottleneck for gene cloning in cereals is the generation of high-quality sequence information from a cultivar of interest. In order to accelerate gene cloning from any cropping line, we report 'targeted chromosome-based cloning via long-range assembly' (TACCA). TACCA combines lossless genome-complexity reduction via chromosome flow sorting with Chicago long-range linkage to assemble complex genomes. We applied TACCA to produce a high-quality (N50 of 9.76 Mb) de novo chromosome assembly of the wheat line CH Campala Lr22a in only 4 months. Using this assembly we cloned the broad-spectrum Lr22a leaf-rust resistance gene, using molecular marker information and ethyl methanesulfonate (EMS) mutants, and found that Lr22a encodes an intracellular immune receptor homologous to the Arabidopsis thaliana RPM1 protein.


Subject(s)
Cloning, Molecular/methods , Edible Grain/genetics , Genes, Plant/genetics , Triticum/genetics , Biotechnology , Genetic Linkage
SELECTION OF CITATIONS
SEARCH DETAIL
...