Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 379(6627): 94-99, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36603079

ABSTRACT

Maize (Zea mays) is a major staple crop in Africa, where its yield and the livelihood of millions are compromised by the parasitic witchweed Striga. Germination of Striga is induced by strigolactones exuded from maize roots into the rhizosphere. In a maize germplasm collection, we identified two strigolactones, zealactol and zealactonoic acid, which stimulate less Striga germination than the major maize strigolactone, zealactone. We then showed that a single cytochrome P450, ZmCYP706C37, catalyzes a series of oxidative steps in the maize-strigolactone biosynthetic pathway. Reduction in activity of this enzyme and two others involved in the pathway, ZmMAX1b and ZmCLAMT1, can change strigolactone composition and reduce Striga germination and infection. These results offer prospects for breeding Striga-resistant maize.


Subject(s)
Lactones , Striga , Zea mays , Germination , Lactones/metabolism , Plant Breeding , Striga/growth & development , Zea mays/genetics , Zea mays/metabolism
2.
J Appl Microbiol ; 119(6): 1467-81, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26332271

ABSTRACT

The spermosphere is the zone surrounding seeds where interactions between the soil, microbial communities and germinating seeds take place. The concept of the spermosphere is usually only applied during germination sensu stricto. Despite the transient nature of this very small zone of soil around the germinating seed, the microbial activities which occur there may have long-lasting impacts on plants. The spermosphere is indirectly characterized by either (i) seed exudates, which could be inhibitors or stimulators of micro-organism growth or (ii) the composition of the microbiome on and around the germinating seeds. The microbial communities present in the spermosphere directly reflect that of the germination medium or are host-dependent and influenced quantitatively and qualitatively by host exudates. Despite its strong impact on the future development of plants, the spermosphere remains little studied. This can be explained by the technical difficulties related to characterizing this concept due to its short duration, small size and biomass, and the number and complexity of the interactions that take place. However, recent technical methods, such as metabolite profiling, combining phenotypic methods with DNA- and RNA-based methods, could be used to investigate seed exudates, microbial communities and their interactions with the soil environment.


Subject(s)
Microbiota , Seeds , Soil Microbiology , Germination , Plants/microbiology , Seeds/microbiology , Seeds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...