Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Org Biomol Chem ; 20(48): 9618-9624, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36420694

ABSTRACT

A new variation of Prins cyclization to directly and stereoselectively synthesize cis-2,6-disubstituted tetrahydropyran-4-ones from 3-chlorohomoallylic alcohols and aldehydes catalyzed by perrhenic acid is reported. The reaction is generally compatible with a range of aliphatic and aromatic aldehydes and 24 examples of tetrahydropyran-4-one products have been prepared in moderate to good yields. This methodology highlights the use of simple starting materials and commercially available aqueous perrhenic acid as a catalyst for Prins cyclization reactions to directly synthesize 2,6-disubstituted tetrahydropyran-4-ones.


Subject(s)
Alcohols , Aldehydes , Cyclization , Catalysis
2.
Chem Asian J ; 17(16): e202200329, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35727893

ABSTRACT

The convergent total syntheses of three 14-membered macrolide natural products, mutolide, nigrosporolide and (4S,7S,13S)-4,7-dihydroxy-13-tetradeca-2,5,8-trienolide have been achieved. The key synthetic features include Shiina macrolactonization to assemble the 14-membered macrocyclic core, Wittig or Still-Gennari olefination and selective reduction of propargylic alcohol to construct the E- or Z-olefins. Cross metathesis was also highlighted as an efficient tool to forge the formation of E-olefin. The three synthetic macrolides were evaluated for their cytotoxic activity against three human cancer cell lines as well as for inhibitory effect on CFTR-mediated chloride secretion in human intestinal epithelial (T84) cells. Mutolide displayed significant cytotoxic activity against HCT116 colon cancer cells with an IC50 of ∼12 µM as well as a potent CTFR inhibitory effect with an IC50 value of ∼1 µM.


Subject(s)
Antineoplastic Agents , Biological Products , Alkenes , Anti-Bacterial Agents , Antineoplastic Agents/pharmacology , Humans , Macrolides/pharmacology , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL