Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1270, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218918

ABSTRACT

In this study, we demonstrate the green synthesis of bimetallic silver-copper nanoparticles (Ag-Cu NPs) using Aerva lanata plant extract. These NPs possess diverse biological properties, including in vitro antioxidant, antibiofilm, and cytotoxic activities. The synthesis involves the reduction of silver nitrate and copper oxide salts mediated by the plant extract, resulting in the formation of crystalline Ag-Cu NPs with a face-centered cubic structure. Characterization techniques confirm the presence of functional groups from the plant extract, acting as stabilizing and reducing agents. The synthesized NPs exhibit uniform-sized spherical morphology ranging from 7 to 12 nm. They demonstrate significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, inhibiting extracellular polysaccharide secretion in a dose-dependent manner. The Ag-Cu NPs also exhibit potent cytotoxic activity against cancerous HeLa cell lines, with an inhibitory concentration (IC50) of 17.63 µg mL-1. Additionally, they demonstrate strong antioxidant potential, including reducing capability and H2O2 radical scavenging activity, particularly at high concentrations (240 µg mL-1). Overall, these results emphasize the potential of A. lanata plant metabolite-driven NPs as effective agents against infectious diseases and cancer.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Humans , Antioxidants/pharmacology , Copper/pharmacology , HeLa Cells , Metal Nanoparticles/chemistry , Hydrogen Peroxide , Microbial Sensitivity Tests , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry
2.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36677967

ABSTRACT

A number of phytochemicals have been identified as promising drug molecules against a variety of diseases using an in-silico approach. The current research uses this approach to identify the phyto-derived drugs from Andrographis paniculata (Burm. f.) Wall. ex Nees (AP) for the treatment of diphtheria. In the present study, 18 bioactive molecules from Andrographis paniculata (obtained from the PubChem database) were docked against the diphtheria toxin using the AutoDock vina tool. Visualization of the top four molecules with the best dockscore, namely bisandrographolide (-10.4), andrographiside (-9.5), isoandrographolide (-9.4), and neoandrographolide (-9.1), helps gain a better understanding of the molecular interactions. Further screening using molecular dynamics simulation studies led to the identification of bisandrographolide and andrographiside as hit compounds. Investigation of pharmacokinetic properties, mainly ADMET, along with Lipinski's rule and binding affinity considerations, narrowed down the search for a potent drug to bisandrographolide, which was the only molecule to be negative for AMES toxicity. Thus, further modification of this compound followed by in vitro and in vivo studies can be used to examine itseffectiveness against diphtheria.


Subject(s)
Andrographis , Corynebacterium diphtheriae , Diphtheria , Diterpenes , Andrographis paniculata , Andrographis/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Plant Extracts/pharmacology , Phytochemicals/pharmacology
3.
J Biomol Struct Dyn ; 41(7): 2687-2697, 2023 04.
Article in English | MEDLINE | ID: mdl-35147481

ABSTRACT

Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine which plays a crucial role in controlling inflammatory responses. The pathway of Rheumatoid arthritis (RA) leading to TNF-alpha is activated by macrophages and quite often by natural killer cells and lymphocytes. In the inflammatory phase, it is believed to be the main mediator and to be anchored with the progression of different diseases such as ankylosing spondylitis, Crohn's disease, and Rheumatoid arthritis (RA). The major goal of this study is to use in silico docking studies to investigate the anti-inflammatory potential of a bioactive molecule from the medicinal plant Andrographis paniculata. The three-dimensional structures of different phytochemicals of A. paniculata were obtained from PubChem database, and the receptor protein was derived from PDB database. Docking analysis was executed using AutoDock vina, and the binding energies were compared. Bisandrographolide A and Andrographidine C revealed the highest score of -8.6 Kcal/mol, followed by, Neoandrographolide (-8.5 Kcal/mol). ADME and toxicity parameters were evaluated for these high scoring ligands and results showed that Andrographidine C could be a potent drug, whereas Neoandrographolide and Bisandrographolide A can be modified in in vitro and can lead to a promising drug. Further, the top scorer (Andrographidine C) and control drug (Leflunomide) were subjected to 100 ns MD Simulation. The protein complex with Andrographidine C had more stable confirmation with lower RMSD (0.28 nm) and higher binding energy (-133.927 +/- 13.866 kJ/mol). In conclusion, Andrographidine C may be a potent surrogate to the disease-modifying anti-rheumatic drugs (DMARD's) & Non-steroidal anti-inflammatory drugs (NSAID's) that has fewer or minor adverse effects and can aid in RA management.


Subject(s)
Andrographis , Arthritis, Rheumatoid , Molecular Docking Simulation , Tumor Necrosis Factor-alpha/metabolism , Andrographis paniculata , Andrographis/chemistry , Andrographis/metabolism , Anti-Inflammatory Agents/metabolism , Arthritis, Rheumatoid/drug therapy , Phytochemicals/metabolism
4.
J Biomol Struct Dyn ; 40(21): 11203-11215, 2022.
Article in English | MEDLINE | ID: mdl-34319220

ABSTRACT

Andrographis paniculata is a widely used medicinal plant for treating a variety of human infections. The plant's bioactives have been shown to have a variety of biological activities in various studies, including potential antiviral, anticancer, and anti-inflammatory effects in a variety of experimental models. The present investigation identifies a potent antiviral compound from the phytochemicals of Andrographis paniculata against Zika virus using computational docking simulation. The ZIKV NS2B-NS3 protease, which is involved in viral replication, has been considered as a promising target for Zika virus drug development. The bioactives from Andrographis paniculata, along with standard drugs as control were screened for their binding energy using AutoDock 4.2 against the viral protein. Based on the higher binding affinity the phytocompounds Bisandrographolide A (-11.7), Andrographolide (-10.2) and Andrographiside (-9.7) have convenient interactions at the binding site of target protein (ZIKV NS2B-NS3 protease) in comparison with the control drug. In addition, using insilico tools, the selected high-scoring molecules were analysed for pharmacological properties such as ADME (Absorption, Distribution, Metabolism, and Excretion profile) and toxicity. Andrographolide was reported to have strong pharmacodynamics properties and target accuracy based on the Lipinski rule and lower binding energy. The selected bioactives showed lower AMES toxicity and has potent antiviral activity against zika virus targets. Further, MD simulation studies validated Bisandrographolide A & Andrographolide as a potential hit compound by exhibiting good binding with the target protein. The compounds exhibited good hydrogen bonds with ZIKV NS2B-NS3 protease. As a result, bioactives from the medicinal plant Andrographis paniculata can be studied in vitro and in vivo to develop an antiviral phytopharmaceutical for the successful treatment of zika virus.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Protease Inhibitors , Zika Virus , Andrographis paniculata , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Conformation , Serine Endopeptidases/chemistry , Viral Nonstructural Proteins/chemistry , Zika Virus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...