Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(24): e202400613, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38379193

ABSTRACT

The germylone dimNHCGe (5, dimNHC=diimino N-heterocyclic carbene) undergoes a [2+2] cycloaddition with isocyanates RNCO (R=4-tolyl or 3,5-xylyl) to furnish novel alkyl carboxamido germylenes 7 (R=4-tolyl) and 8 (R=3,5-xylyl), featuring a C-C bond between the former carbene carbon and the isocyanate moiety. Heating a mixture of 8 with 4-tolyl isocyanate to 100 °C results in isocyanate metathesis, demonstrating reversible C-C bond formation on the reduced germanium compound. DFT calculations suggest that this process occurs via the reductive dissociation of isocyanate from 8 that regenerates the parent Ge(0) compound 5.

2.
Chemistry ; 29(63): e202301981, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37732936

ABSTRACT

The germylone dimNHCGe (dimNHC=diimino N-heterocyclic carbene) reacts with azides N3 R (R=SiMe3 or p-tolyl) to furnish the first examples of germanium π-complexes, i. e. guanidine-ligated compounds (dimNHI-SiMe3 )Ge (NHI=N-heterocyclic imine, R=SiMe3 ) and (dimNHI-Tol)Ge (R=p-tolyl). DFT calculations suggest that these species are formed by a Staudinger type replacement of dinitrogen in the azide by a nucleophilic germylone, leading to a transient carbene adduct of iminogermylidene. Heating a solution of compound (dimNHI-SiMe3 )Ge to 70 °C results in extrusion of the iminogermylidene that further aggregates to produce the known [Me3 SiNGe]4 tetramer, whereas the imidazolylidene fragment transforms into an unusual heptatriene species that can be considered as a product of carbene insertion into the C-C bond of a pendant Ar substituent at the imidazolylidene nitrogen of the dimNHC. Reaction of (dimNHI-SiMe3 )Ge with tetrachloro-o-benzoquinone results in the net transfer of a germanium atom and formation of the free diimino-guanidine ligand. This ligand also forms when (dimNHI-SiMe3 )Ge is treated with azide N3 (p-Tol), with the germanium product being [(p-Tol)NGe]n.

3.
Phys Chem Chem Phys ; 19(23): 14913-14918, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28561840

ABSTRACT

A doping of small boron clusters with silicon atoms leads to the formation of stable boron nanoribbon structures. We present an analysis on the geometric and electronic structure, using MOs and electron localization function (ELF) maps, of boron ribbons represented by the dianions B10Si22- and B12Si22-. The effect of Si dopants and the origin of the underlying electron count [π2(n+1)σ2n] are analyzed. Interaction between both systems of delocalized π and σ electrons creating alternant B-B bonds along the perimeter of a ribbon induces its high thermodynamic stability. The enhanced stability is related to the self-locked phenomenon.

4.
Phys Chem Chem Phys ; 11(33): 7274-85, 2009 Sep 07.
Article in English | MEDLINE | ID: mdl-19672539

ABSTRACT

L-Aspartic acid has recently been found to be a good leaving group during HIV reverse transcriptase catalyzed incorporation of deoxyadenosine monophosphate (dAMP) in DNA. This showed that L-Asp is a good mimic for the pyrophosphate moiety of deoxyadenosine triphosphate. The present work explores the thermochemistry and mechanism for hydrolysis of several models for L-aspartic-dAMP using B3LYP/DGDZVP, MP2/6-311++G** and G3MP2 level of theory. The effect of the new compound is gradually investigated: starting from a simple methyl amine leaving group up to the aspartic acid leaving group. The enzymatic environment was mimicked by involving two Mg(2+) ions and some important active site residues in the reaction. All reactions are compared to the corresponding O-coupled leaving group, which is methanol for methyl amine and malic acid for aspartic acid. With methyl amine as a leaving group a tautomeric associative or tautomeric dissociative mechanism is preferred and the barrier is lower than the comparable mechanism with methanol as a leaving group. The calculations on the aspartic acid in the enzymatic environment show that qualitatively the mechanism is the same as for triphosphate but the barrier for hydrolysis by the associative mechanism is higher for L-aspartic-dAMP than for L-malic-dAMP and pyrophosphate.


Subject(s)
Amides/chemistry , Aspartic Acid/chemistry , Nucleotides/chemistry , Phosphoric Acids/chemistry , Quantum Theory , Catalytic Domain , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , Hydrolysis , Magnesium/chemistry , Malates/chemistry , Models, Chemical , Models, Molecular , Nucleotides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...