Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Intensive Care ; 12(1): 62, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35781636

ABSTRACT

BACKGROUND: Whether early fluid accumulation is a risk factor for adverse renal outcomes in septic intensive care unit (ICU) patients remains uncertain. We assessed the association between cumulative fluid balance and major adverse kidney events within 30 days (MAKE30), a composite of death, dialysis, or sustained renal dysfunction, in such patients. METHODS: We performed a multicenter, retrospective observational study in 1834 septic patients admitted to five ICUs in three hospitals in Stockholm, Sweden. We used logistic regression analysis to assess the association between cumulative fluid balance during the first two days in ICU and subsequent risk of MAKE30, adjusted for demographic factors, comorbidities, baseline creatinine, illness severity variables, haemodynamic characteristics, chloride exposure and nephrotoxic drug exposure. We assessed the strength of significant exposure variables using a relative importance analysis. RESULTS: Overall, 519 (28.3%) patients developed MAKE30. Median (IQR) cumulative fluid balance was 5.3 (2.8-8.1) l in the MAKE30 group and 4.1 (1.9-6.8) l in the no MAKE30 group, with non-resuscitation fluids contributing to approximately half of total fluid input in each group. The adjusted odds ratio for MAKE30 was 1.05 (95% CI 1.02-1.09) per litre cumulative fluid balance. On relative importance analysis, the strongest factors regarding MAKE30 were, in decreasing order, baseline creatinine, cumulative fluid balance, and age. In the secondary outcome analysis, the adjusted odds ratio for dialysis or sustained renal dysfunction was 1.06 (95% CI 1.01-1.11) per litre cumulative fluid balance. On separate sensitivity analyses, lower urine output and early acute kidney injury, respectively, were independently associated with MAKE30, whereas higher fluid input was not. CONCLUSIONS: In ICU patients with sepsis, a higher cumulative fluid balance after 2 days in ICU was associated with subsequent development of major adverse kidney events within 30 days, including death, renal replacement requirement, or persistent renal dysfunction.

2.
Entropy (Basel) ; 22(1)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-33285873

ABSTRACT

The information bottleneck (IB) problem tackles the issue of obtaining relevant compressed representations T of some random variable X for the task of predicting Y. It is defined as a constrained optimization problem that maximizes the information the representation has about the task, I ( T ; Y ) , while ensuring that a certain level of compression r is achieved (i.e., I ( X ; T ) ≤ r ). For practical reasons, the problem is usually solved by maximizing the IB Lagrangian (i.e., L IB ( T ; ß ) = I ( T ; Y ) - ß I ( X ; T ) ) for many values of ß ∈ [ 0 , 1 ] . Then, the curve of maximal I ( T ; Y ) for a given I ( X ; T ) is drawn and a representation with the desired predictability and compression is selected. It is known when Y is a deterministic function of X, the IB curve cannot be explored and another Lagrangian has been proposed to tackle this problem: the squared IB Lagrangian: L sq - IB ( T ; ß sq ) = I ( T ; Y ) - ß sq I ( X ; T ) 2 . In this paper, we (i) present a general family of Lagrangians which allow for the exploration of the IB curve in all scenarios; (ii) provide the exact one-to-one mapping between the Lagrange multiplier and the desired compression rate r for known IB curve shapes; and (iii) show we can approximately obtain a specific compression level with the convex IB Lagrangian for both known and unknown IB curve shapes. This eliminates the burden of solving the optimization problem for many values of the Lagrange multiplier. That is, we prove that we can solve the original constrained problem with a single optimization.

3.
Sensors (Basel) ; 15(7): 15265-84, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26131675

ABSTRACT

Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.

SELECTION OF CITATIONS
SEARCH DETAIL
...