Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 24(15): 155602, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23518622

ABSTRACT

A chemical pattern consisting of end-grafted polystyrene brushes (20 nm lines on a 40 nm pitch) on the native oxide of silicon wafers was defined by molecular transfer printing from assembled block co-polymer films. End-grafted hydroxyl-terminated poly(2-vinyl pyridine) brushes were selectively deposited in the interspatial regions. The poly(2-vinyl pyridine) regions selectively sequester acidic HAuCl4 from solution and form arrays of small Au nanoparticles upon exposure to oxygen plasma within the confines of the macromolecular brush layer. This print and fill process to pattern polymer brushes is a generalizable strategy to create functional chemical surface patterns.


Subject(s)
Gold Compounds/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Nanotechnology/instrumentation , Nanotechnology/methods , Polystyrenes/chemistry , Polyvinyls/chemistry , Chlorides/chemistry , Gold/chemistry
2.
ACS Nano ; 6(6): 5693-701, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22647144

ABSTRACT

The synergy of self- and directed-assembly processes and lithography provides intriguing avenues to fabricate translationally ordered nanoparticle arrangements, but currently lacks the robustness necessary to deliver complex spatial organization. Here, we demonstrate that interparticle spacing and local orientation of gold nanorods (AuNR) can be tuned by controlling the Debye length of AuNR in solution and the dimensions of a chemical contrast pattern. Electrostatic and hydrophobic selectivity for AuNR to absorb to patterned regions of poly(2-vinylpyridine) (P2VP) and polystyrene brushes and mats was demonstrated for AuNR functionalized with mercaptopropane sulfonate (MS) and poly(ethylene glycol), respectively. For P2VP patterns of stripes with widths comparable to the length of the AuNR, single- and double-column arrangements of AuNR oriented parallel and perpendicular to the P2VP line were obtained for MS-AuNR. Furthermore, the spacing of the assembled AuNR was uniform along the stripe and related to the ionic strength of the AuNR dispersion. The different AuNR arrangements are consistent with predictions based on maximization of packing of AuNR within the confined strip.


Subject(s)
Gold/chemistry , Molecular Imprinting/methods , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Crystallization/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
3.
Langmuir ; 28(18): 7299-307, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22497347

ABSTRACT

Chemical patterns consisting of poly(2-vinyl pyridine) (P2VP) brushes in a background of a cross-linked polystyrene (PS) mat enabled the highly selective placement of citrate-stabilized Au nanoparticles (NPs) in arrays on surfaces. The cross-linked PS mat prevented the nonspecific binding of Au NPs, and the regions functionalized with P2VP brushes allowed the immobilization of the particles. Isolated chemical patterns of feature sizes from hundreds to tens of nanometers were prepared by standard lithographic techniques. The number of 13 nm Au NPs bound per feature increased linearly with increasing area of the patterns. This behavior is similar to previous reports using 40 nm particles or larger. Arrays of single NPs were obtained by reducing the dimensions of patterned P2VP brushes to below ~20 nm. To generate dense (center-to-center distance = 80 nm) linear chemical patterns for the placement of rows of single NPs, a block-copolymer (BCP)-assisted lithographic process was used. BCPs healed defects associated with the standard lithographic patterning of small dimensions at high densities and led to highly registered, linear, single NP arrays.


Subject(s)
Gold/chemistry , Nanoparticles/chemistry , Polyvinyls/chemistry , Cross-Linking Reagents/chemical synthesis , Cross-Linking Reagents/chemistry , Particle Size , Polystyrenes/chemical synthesis , Polystyrenes/chemistry , Surface Properties
4.
Langmuir ; 24(12): 5988-90, 2008 Jun 17.
Article in English | MEDLINE | ID: mdl-18481883

ABSTRACT

Reactions of Grignard and organolithium reagents are staple transformations in organic chemistry. However, their use in the chemical functionalization of monolayer-protected metallic nanoparticles is unprecedented. In this letter, we report the reaction of Au nanoparticles bearing a mixed monolayer of alkanethiol ligands that are methyl- and N-methoxy- N-methyl amide-terminated. The latter of these rapidly undergoes reaction with organometallic reagents, achieving high yields (in some cases, nearly quantitative) in only a few hours without the need for high pressure, temperature or catalysts. We assess the feasibility of this reaction with a range of organometallic reagents on the basis of both surface reaction yield and also the stability of the particles (defined as the mass % Au particles recovered vs a control). Demonstrating the utility of these strong organometallic reagents opens the door to a large class of reactions that are underutilized within the field of nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...