Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(16): 8711-8720, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38608175

ABSTRACT

This work presents a simple method to create photonic microstructures via the natural evaporation of surfactant-laden colloidal sessile droplets on a flat substrate. In the absence of dissolved surfactant, the evaporating colloidal droplet forms a well-known coffee ring deposition. In contrast, the presence of surfactant leads to the formation of multiple ring structures due to the repetitive pinning-depinning behavior of the droplet contact line (CL). It is found that the multiring structure shows vibrant iridescent structural colors while the coffee ring lacks a photonic nature. This difference in the structural color for the presence and absence of the surfactant is found to be dependent on the arrangement of the particles in the deposition structure. The particle arrangement in the multirings is monolayered and well-ordered. The ordering of the particles is strongly influenced by the particle dynamics, contact angle (CA), and CL dynamics of the evaporating colloidal solution droplet. Furthermore, the iridescent nature of the multiring deposition is demonstrated and explained. The dependence of the multiring deposition structure on the concentration of the dissolved surfactant and the suspended particles is also studied. The findings demonstrate that an intermediate surfactant concentration is desirable for the formation of a multiring structure. Further, the pinning-depinning CL dynamics that causes the formation of the multiring deposition structure is discussed. Finally, we demonstrate the applicability of the approach to smaller droplet volumes.

2.
Langmuir ; 35(27): 8977-8983, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31188004

ABSTRACT

Drying a droplet containing microparticles results in the deposition of particles in various patterns, including the so-called "coffee-ring" pattern. The particle deposition is dependent on the internal flow dynamics, such as the capillary flow and Marangoni vortex (MV), of the droplet. Particle migration and self-assembly on a substrate are interesting phenomena that have critical implications in many applications such as inkjet printing, coating, and many other droplet-based industrial processes. In this work, we observed the formation of bands of particles in a rotating MV during the evaporation of a water droplet containing particles. We investigated the mechanism underlying the formation of banded MV caused by capillary meniscus forces between two particles near the air-liquid interface. In particular, we show that the banded MV can be manipulated by tuning the surfactant concentration and particle concentration. Our findings would provide a new direction in understanding the particle deposition pattern of a colloidal droplet.

3.
ACS Nano ; 12(8): 8406-8414, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-29957925

ABSTRACT

Growing interest in hybrid organic-inorganic lead halide perovskites has led to the development of various perovskite nanowires (NWs), which have potential use in a wide range of applications, including lasers, photodetectors, and light-emitting diodes (LEDs). However, existing nanofabrication approaches lack the ability to control the number, location, orientation, and properties of perovskite NWs. Their growth mechanism also remains elusive. Here, we demonstrate a micro/nanofluidic fabrication technique (MNFFT) enabling both precise control and in situ monitoring of the growth of perovskite NWs. The initial nucleation point and subsequent growth path of a methylammonium lead iodide-dimethylformamide (MAPbI3·DMF) NW array can be guided by a nanochannel. In situ UV-vis absorption spectra are measured in real time, permitting the study of the growth mechanism of the DMF-mediated crystallization of MAPbI3. As an example of an application of the MNFFT, we demonstrate a highly sensitive MAPbI3-NW-based photodetector on both solid and flexible substrates, showing the potential of the MNFFT for low-cost, large-scale, highly efficient, and flexible optoelectronic applications.

4.
Nanoscale ; 9(27): 9622-9630, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28665432

ABSTRACT

Nanowires (NWs) with a high surface-to-volume ratio are advantageous for bio- or chemical sensor applications with high sensitivity, high selectivity, rapid response, and low power consumption. However, NWs are typically fabricated by combining several nanofabrication and even microfabrication processes, resulting in drawbacks such as high fabrication cost, extensive labor, and long processing time. Here, we show a novel NW fabrication platform based on "crack-photolithography" to produce a micro-/nanofluidic channel network. Solutions were loaded along the microchannel, while chemical synthesis was performed in the nanoslit-like nanochannels for fabricating silver nanobelts (AgNBs). In addition, the NW/NB fabrication platform not only made it possible to produce AgNBs in a repeatable, high-throughput, and low-cost manner but also allowed the simultaneous synthesis and alignment of AgNBs on a chip, eliminating the need for special micro- and/or nanofabrication equipment and dramatically reducing the processing time, labor, and cost. Finally, we demonstrated that the AgNBs can be used as chemical sensors, either as prepared or when integrated in a flexible substrate, to detect target analytes such as hydrogen peroxide.

5.
Langmuir ; 30(41): 12144-53, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25229613

ABSTRACT

Evaporation-induced particle deposition patterns like coffee rings provide easy visual identification that is beneficial for developing inexpensive and simple diagnostic devices for detecting pathogens. In this study, the effect of chemotaxis on such pattern formation has been realized experimentally in drying droplets of bacterial suspensions. We have investigated the velocity field, concentration profile, and deposition pattern in the evaporating droplet of Escherichia coli suspension in the presence and absence of nutrients. Flow visualization experiments using particle image velocimetry (PIV) were carried out with E. coli bacteria as biological tracer particles. Experiments were conducted for suspensions of motile (live) as well as nonmotile (dead) bacteria. In the absence of any nutrient gradient like sugar on the substrate, both types of bacterial suspension showed two symmetric convection cells and a ring like deposition of particles after complete evaporation. Interestingly, the droplet containing live bacterial suspension showed a different velocity field when the sugar was placed at the base of the droplet. This can be attributed to the chemoattractant nature of the sugar, which induced chemotaxis among live bacteria targeted toward the nutrient site. Deposition of the suspended bacteria was also displaced toward the nutrient site as the evaporation proceeded. Our experiments demonstrate that both velocity fields and concentration patterns can be altered by chemotaxis to modify the pattern formation in evaporating droplet containing live bacteria. These results highlight the role of bacterial chemotaxis in modifying coffee ring patterns.


Subject(s)
Chemotaxis , Escherichia coli/cytology , Escherichia coli/isolation & purification , Rheology , Desiccation , Particle Size , Solutions/analysis , Solutions/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...