Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 312(5778): 1341-4, 2006 Jun 02.
Article in English | MEDLINE | ID: mdl-16741110

ABSTRACT

Rendezvous of the Japanese spacecraft Hayabusa with the near-Earth asteroid 25143 Itokawa took place during the interval September through November 2005. The onboard camera imaged the solid surface of this tiny asteroid (535 meters by 294 meters by 209 meters) with a spatial resolution of 70 centimeters per pixel, revealing diverse surface morphologies. Unlike previously explored asteroids, the surface of Itokawa reveals both rough and smooth terrains. Craters generally show unclear morphologies. Numerous boulders on Itokawa's surface suggest a rubble-pile structure.

2.
Nature ; 424(6945): 165-8, 2003 Jul 10.
Article in English | MEDLINE | ID: mdl-12853949

ABSTRACT

Stellar occultations--the passing of a relatively nearby body in front of a background star--can be used to probe the atmosphere of the closer body with a spatial resolution of a few kilometres (ref. 1). Such observations can yield the scale height, temperature profile, and other information about the structure of the occulting atmosphere. Occultation data acquired for Pluto's atmosphere in 1988 revealed a nearly isothermal atmosphere above a radius of approximately 1,215 km. Below this level, the data could be interpreted as indicating either an extinction layer or the onset of a large thermal gradient, calling into question the fundamental structure of this atmosphere. Another question is to what extent Pluto's atmosphere might be collapsing as it recedes from the Sun (passing perihelion in 1989 in its 248-year orbital period), owing to the extreme sensitivity of the equilibrium surface pressure to the surface temperature. Here we report observations at a variety of visible and infrared wavelengths of an occultation of a star by Pluto in August 2002. These data reveal evidence for extinction in Pluto's atmosphere and show that it has indeed changed, having expanded rather than collapsed, since 1988.

3.
Icarus ; 94: 345-53, 1991.
Article in English | MEDLINE | ID: mdl-11538090

ABSTRACT

Using telescopic observations by ourselves and other observers, we have identified cyano-group containing molecules in the very dark solids on the surfaces of a few D-class asteroids, the dust of some comets, and low-albedo hemisphere of Iapetus, and the rings of Uranus, through spectroscopic detection of the 2.2-micrometers overtone of the C triple bond N stretching fundamental mode. The occurrence of this band on all four classes of small Solar System bodies may be diagnostic of the duration of exposure and degree of modification of surface materials, and may also establish a link between outer Solar System and interstellar materials.


Subject(s)
Carbon/chemistry , Nitrogen/chemistry , Solar System , Carbon/analysis , Dust/analysis , Hydrocarbons/analysis , Hydrocarbons/chemistry , Hydrogen Cyanide/chemistry , Ice , Minor Planets , Models, Chemical , Nitrogen/analysis , Spectrum Analysis , Uranus
4.
Science ; 237(4814): 512-4, 1987 Jul 31.
Article in English | MEDLINE | ID: mdl-17730324

ABSTRACT

Analysis of the observations of several Pluto-Charon occultation and transit events in 1985 and 1986 has provided a more detailed knowledge of the system. The sum of the radii of Pluto and Charon is 1786 +/- 19 kilometers, but the individual radii are somewhat more poorly determined; Pluto is 1145 +/- 46 kilometers in radius and Charon is 642 +/- 34 kilometers in radius. The mean density of the system is 1.84 +/- 0.19 grams per cubic centimeter, implying that more than half of the mass is due to rock. Charon appears to have hemispheres of two different colors, the Plutofacing side being neutral in color and the opposite hemisphere being a reddish color similar to Pluto.

5.
Science ; 228(4704): 1193-5, 1985 Jun 07.
Article in English | MEDLINE | ID: mdl-17735339

ABSTRACT

The first eclipses between Pluto and its satellite ("Charon") were detected in January and February 1985, confirming the satellite's existence. Eclipses lasting a few hours will now occur at 3.2-day intervals for the next 5 to 6 years and then will cease for about 120 years. Careful observations of these eclipses will allow greatly improved determinations to be made of several physical parameters for the Pluto-Charon system: the diameters of the planet and satellite, the surface albedo distribution on one hemisphere of the planet, the orbit of the satellite, and the mass of the planet and hence its density. Knowledge of the density will provide a constraint on models of Pluto's bulk composition.

6.
Science ; 215(4530): 289-91, 1982 Jan 15.
Article in English | MEDLINE | ID: mdl-17784355

ABSTRACT

The 24 May 1981 close approach of Neptune to an uncataloged star was photoelectrically monitored from two observatories separated by 6 kilometers parallel to the occultation track. An 8.1-second drop in signal, recorded simultaneously at both sites, is interpreted as resulting from the passage of a third satellite of Neptune in front of the star. From the duration of the event, the derived minimum diameter for an object sharing Neptune's motion is 180 kilometers. If the object was in Neptune's equatorial plane and there are no significant errors in the prediction ephemeris, the object was located at a distance of 3 Neptune radii from Neptune's center.

SELECTION OF CITATIONS
SEARCH DETAIL
...