Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 18(7)2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29973538

ABSTRACT

Photogrammetric processing is available in various software solutions and can easily deliver 3D pointclouds as accurate as 1 pixel. Certain applications, e.g., very accurate shape reconstruction in industrial metrology or change detection for deformation studies in geosciences, require results of enhanced accuracy. The tie-point extraction step is the opening in the photogrammetric processing chain and therefore plays a key role in the quality of the subsequent image orientation, camera calibration and 3D reconstruction. Improving its precision will have an impact on the obtained 3D. In this research work we describe a method which aims at enhancing the accuracy of image orientation by adding a second iteration photogrammetric processing. The result from the classical processing is used as a priori information to guide the extraction of refined tie-points of better photogrammetric quality. Evaluated on indoor and UAV acquisitions, the proposed methodology shows a significant improvement on the obtained 3D point accuracy.

2.
Sensors (Basel) ; 17(7)2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28718788

ABSTRACT

Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l'information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.

4.
Appl Opt ; 46(33): 8170-80, 2007 Nov 20.
Article in English | MEDLINE | ID: mdl-18026556

ABSTRACT

The statistical properties of atmospheric water vapor mixing ratio (WVMR) determined as the ratio of Raman lidar signals backscattered from water vapor and nitrogen molecules are studied. It is shown that WVMR estimates can be biased by a small percentage at low signal photon-counting rates due to fluctuations in the nitrogen signal in the denominator of the ratio, the magnitude of the bias being linked to the signal-to-noise ratio of the nitrogen signal. This is particularly important when unbiased estimates are required as in the case of climate studies and global positioning system (GPS) signal calibration. Different bias corrections and a modified ratio formulation are proposed in order to correct or eliminate this bias. The method is successfully applied in processing signals obtained with an experimental Raman lidar system devoted to calibrate GPS signals for slant path delays. It is shown to reduce biases into negligible values in both WVMR and wet path delay estimates in the range interval of 0-7 km.

SELECTION OF CITATIONS
SEARCH DETAIL
...