Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(13)2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31288438

ABSTRACT

In this paper, a 2-node beam element is developed based on Quasi-3D beam theory and mixed formulation for static bending of functionally graded (FG) beams. The transverse shear strains and stresses of the proposed beam element are parabolic distributions through the thickness of the beam and the transverse shear stresses on the top and bottom surfaces of the beam vanish. The proposed beam element is free of shear-looking without selective or reduced integration. The material properties of the functionally graded beam are assumed to vary according to the power-law index of the volume fraction of the constituents through the thickness of the beam. The numerical results of this study are compared with published results to illustrate the accuracy and convenience rate of the new beam element. The influence of some parametrics on the bending behavior of FGM beams is investigated.

2.
Materials (Basel) ; 12(15)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357460

ABSTRACT

A refined simple first-order shear deformation theory is developed to investigate the static bending and free vibration of advanced composite plates such as functionally graded plates. By introducing the new distribution shape function, the transverse shear strain and shear stress have a parabolic distribution across the thickness of the plates, and they equal zero at the surfaces of the plates. Hence, the new refined theory needs no shear correction factor. The Navier solution is applied to investigate the static bending and free vibration of simply supported advanced composite plates. The proposed theory shows an improvement in calculating the deflections and frequencies of advanced composite plates. The formulation and transformation of the present theory are as simple as the simple first-order shear deformation. The comparisons of deflection, axial stresses, transverse shear stresses, and frequencies of the plates obtained by the proposed theory with published results of different theories are carried out to show the efficiency and accuracy of the new theory. In addition, some discussions on the influence of various parameters such as the power-law index, the slenderness ratio, and the aspect ratio are carried out, which are useful for the design and testing of advanced composite structures.

3.
Materials (Basel) ; 12(8)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018624

ABSTRACT

In working processes, mechanical systems are often affected by both internal and external forces, which are the cause of the forced vibrations of the structures. They can be destroyed if the amplitude of vibration reaches a high enough value. One of the most popular ways to reduce these forced vibrations is to attach tuned mass damper (TMD) devices, which are commonly added at the maximum displacement point of the structures. This paper presents the computed results of the free vibration and the vibration response of the space frame system under an external random load, which is described as a stationary process with white noise. Static and dynamic equations are formed through the finite element method. In addition, this work also establishes artificial neural networks (ANNs) in order to predict the vibration response of the first frequencies of the structure. Numerical studies show that the data set of the TMD device strongly affects the first frequencies of the mechanical system, and the proposed artificial intelligence (AI) model can predict exactly the vibration response of the first frequencies of the structure. For the forced vibration problem, we can find optimal parameters of the TMD device and thus obtain minimum displacements of the structure. The results of this work can be used as a reference when applying this type of structure to TMD devices.

4.
Materials (Basel) ; 12(8)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999642

ABSTRACT

This paper presents a finite element formulation to study the mechanical buckling of stiffened functionally graded material (FGM) plates. The approach is based on a third-order shear deformation theory (TSDT) introduced by Guangyu Shi. The material properties of the plate were assumed to be varied in the thickness direction by a power law distribution, but the material of the stiffener was the same as that of the one of the bottom surface where the stiffener was placed. A parametric study was carried out to highlight the effect of material distribution, the thickness-to-width ratio, and stiffener parameters on the buckling characteristics of the stiffened FGM plates. Numerical results showed that the addition of stiffener to the FGM plate could significantly reduce the weight of the FGM plate but that both the FGM plates with and without stiffener had equally high strength in the same boundary condition and compression loading.

5.
Materials (Basel) ; 12(3)2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30696052

ABSTRACT

There are many beam models to simulate the variable thickness functionally graded material (FGM) beam, each model has advantages and disadvantages in computer aided engineering of the mechanical behavior of this beam. In this work, a new model of beam is presented to study the mechanical static bending, free vibration, and buckling behavior of the variable thickness functionally graded material beams. The formulations are based on modified first order shear deformation theory and interpolating polynomials. This new beam model is free of shear-locking for both thick and thin beams, is easy to apply in computation, and has efficiency in simulating the variable thickness beams. The effects of some parameters, such as the power-law material index, degree of non-uniformity index, and the length-to-height ratio, on the mechanical behavior of the variable thickness FGM beam are considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...