Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069260

ABSTRACT

Deeper knowledge about the role of the tumor microenvironment (TME) in cancer development and progression has resulted in new strategies such as gene-based cancer immunotherapy. Whereas some approaches focus on the expression of tumoricidal genes within the TME, DNA-based vaccines are intended to be expressed in antigen-presenting cells (e.g., dendritic cells, DCs) in secondary lymphoid organs, which in turn induce anti-tumor T cell responses. Besides effective delivery systems and the requirement of appropriate adjuvants, DNA vaccines themselves need to be optimized regarding efficacy and selectivity. In this work, the concept of DC-focused transcriptional targeting was tested by applying a plasmid encoding for the luciferase reporter gene under the control of a derivative of the human fascin1 gene promoter (pFscnLuc), comprising the proximal core promoter fused to the normally more distantly located DC enhancer region. DC-focused activity of this reporter construct was confirmed in cell culture in comparison to a standard reporter vector encoding for luciferase under the control of the strong ubiquitously active cytomegalovirus promoter and enhancer (pCMVLuc). Both plasmids were also compared upon intravenous administration in mice. The organ- and cell type-specific expression profile of pFscnLuc versus pCMVLuc demonstrated favorable activity especially in the spleen as a central immune organ and within the spleen in DCs.


Subject(s)
Neoplasms , Humans , Mice , Animals , Promoter Regions, Genetic , Genes, Reporter , Neoplasms/metabolism , Dendritic Cells , Luciferases/metabolism , Tumor Microenvironment
2.
Microorganisms ; 11(7)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37512949

ABSTRACT

The transmission of viruses from one host to another typically occurs through horizontal or vertical pathways. The horizontal pathways include transmission amongst individuals, usually through bodily fluids or excretions, while vertical transmission transpires from mother to their offspring, either during pregnancy, childbirth, or breastfeeding. While there are more than 200 human pathogenic viruses to date, only a small number of them are known to be transmitted via breast milk, including cytomegalovirus (CMV), human immunodeficiency virus type 1 (HIV-1), and human T cell lymphotropic virus type 1 (HTLV-1), the latter two belonging to the family Retroviridae. Breast milk transmission is a common characteristic among mammalian retroviruses, but there is a lack of reports summarizing our knowledge regarding this route of transmission of mammalian retroviruses. Here, we provide an overview of the transmission of mammalian exogenous retroviruses with a focus on Orthoretrovirinae, and we highlight whether they have been described or suspected to be transmitted through breast milk, covering various species. We also elaborate on the production and composition of breast milk and discuss potential entry sites of exogenous mammalian retroviruses during oral transmission.

3.
Mol Ther ; 31(7): 2266-2285, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36934299

ABSTRACT

The human T cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that persists as a provirus in the genome of infected cells and can lead to adult T cell leukemia (ATL). Worldwide, more than 10 million people are infected and approximately 5% of these individuals will develop ATL, a highly aggressive cancer that is currently incurable. In the last years, genome editing tools have emerged as promising antiviral agents. In this proof-of-concept study, we use substrate-linked directed evolution (SLiDE) to engineer Cre-derived site-specific recombinases to excise the HTLV-1 proviral genome from infected cells. We identified a conserved loxP-like sequence (loxHTLV) present in the long terminal repeats of the majority of virus isolates. After 181 cycles of SLiDE, we isolated a designer-recombinase (designated RecHTLV), which efficiently recombines the loxHTLV sequence in bacteria and human cells with high specificity. Expression of RecHTLV in human Jurkat T cells resulted in antiviral activity when challenged with an HTLV-1 infection. Moreover, expression of RecHTLV in chronically infected SP cells led to the excision of HTLV-1 proviral DNA. Our data suggest that recombinase-mediated excision of the HTLV-1 provirus represents a promising approach to reduce proviral load in HTLV-1-infected individuals, potentially preventing the development of HTLV-1-associated diseases.


Subject(s)
Human T-lymphotropic virus 1 , Paraparesis, Tropical Spastic , Adult , Humans , Human T-lymphotropic virus 1/genetics , Paraparesis, Tropical Spastic/drug therapy , Paraparesis, Tropical Spastic/genetics , Proviruses/genetics , Antiviral Agents
4.
Front Immunol ; 13: 978800, 2022.
Article in English | MEDLINE | ID: mdl-36052071

ABSTRACT

The viral transactivator Tax plays a key role in HTLV-1 reactivation and de novo infection. Previous approaches focused on the histone deacetylase inhibitor (HDACi) Valproate as a latency-reversing agent to boost Tax expression and expose infected cells to the host's immune response. However, following treatment with Valproate proviral load decreases in patients with HAM/TSP were only transient. Here, we hypothesize that other compounds, including more potent and selective HDACi, might prove superior to Valproate in manipulating Tax expression. Thus, a panel of HDACi (Vorinostat/SAHA/Zolinza, Panobinostat/LBH589/Farydak, Belinostat/PXD101/Beleodaq, Valproate, Entinostat/MS-275, Romidepsin/FK228/Istodax, and MC1568) was selected and tested for toxicity and potency in enhancing Tax expression. The impact of the compounds was evaluated in different model systems, including transiently transfected T-cells, chronically HTLV-1-infected T-cell lines, and freshly isolated PBMCs from HTLV-1 carriers ex vivo. We identified the pan-HDACi Panobinostat and class I HDACi Romidepsin as particularly potent agents at raising Tax expression. qRT-PCR analysis revealed that these inhibitors considerably boost tax and Tax-target gene transcription. However, despite this significant increase in tax transcription and histone acetylation, protein levels of Tax were only moderately enhanced. In conclusion, these data demonstrate the ability of Panobinostat and Romidepsin to manipulate Tax expression and provide a foundation for further research into eliminating latently infected cells. These findings also contribute to a better understanding of conditions limiting transcription and translation of viral gene products.


Subject(s)
Human T-lymphotropic virus 1 , Cell Line , Depsipeptides , Histone Deacetylase Inhibitors/pharmacology , Humans , Panobinostat/pharmacology , T-Lymphocytes , Valproic Acid , Vorinostat
5.
Front Med (Lausanne) ; 9: 867147, 2022.
Article in English | MEDLINE | ID: mdl-35360738

ABSTRACT

Breastfeeding is recommended by the World Health Organization for at least 6 months up to 2 years of age, and breast milk protects against several diseases and infections. Intriguingly, few viruses are transmitted via breastfeeding including Human T-cell leukemia virus Type 1 (HTLV-1). HTLV-1 is a highly oncogenic yet neglected retrovirus, which primarily infects CD4+ T-cells in vivo and causes incurable diseases like HTLV-1-associated inflammatory conditions or Adult T-cell leukemia/lymphoma (ATLL) after lifelong viral persistence. Worldwide, at least 5-10 million people are HTLV-1-infected and most of them are unaware of their infection posing the risk of silent transmissions. HTLV-1 is transmitted via cell-containing body fluids such as blood products, semen, and breast milk, which constitutes the major route of mother-to-child transmission (MTCT). Risk of transmission increases with the duration of breastfeeding, however, abstinence from breastfeeding as it is recommended in some endemic countries is not an option in resource-limited settings or underrepresented areas and populations. Despite significant progress in understanding details of HTLV-1 cell-to-cell transmission, it is still not fully understood, which cells in which organs get infected via the oral route, how these cells get infected, how breast milk affects this route of infection and how to inhibit oral transmission despite breastfeeding, which is an urgent need especially in underrepresented areas of the world. Here, we review these questions and provide an outlook how future research could help to uncover prevention strategies that might ultimately allow infants to benefit from breastfeeding while reducing the risk of HTLV-1 transmission.

6.
Cancers (Basel) ; 14(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35158803

ABSTRACT

Transcriptional regulation of the actin-bundling protein and tumor marker Fascin is highly diverse depending on cell and tumor type. Previously, we discovered that the viral oncoprotein Tax-1 of human T-cell leukemia virus type 1 (HTLV-1) considerably enhances Fascin expression in T-cells, depending on classical NF-κB signaling. In this study, we asked if the non-oncogenic Tax-2 of the related HTLV-2 is still able to induce Fascin by using luciferase assays, immunoblot, and qPCR. We found that Tax-2 only slightly induces Fascin expression compared to Tax-1; however, both Tax-1 and Tax-2 comparably activated a 1.6 kb fragment in the human Fascin promoter including Tax-responsive elements. Furthermore, we identified a link between Tax-induced activity of the alternative NF-κB pathway and Fascin induction. While treatment with the second mitochondria-derived activator of caspases (SMAC)-mimetic AZD5582, a compound known to robustly activate alternative NF-κB signaling, did not induce Fascin, combination of AZD5582 with activation of classical NF-κB signaling by Tax-2 significantly induced Fascin expression. In conclusion, our data demonstrate that both classical and alternative NF-κB activity are necessary for strong Fascin induction by the viral Tax oncoproteins, thus, shedding new light on the regulation of Fascin in T-cells and during viral transformation.

7.
Int J Mol Sci ; 22(24)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34948391

ABSTRACT

The human T-cell leukemia virus type 1 (HTLV-1)-encoded transactivator and oncoprotein Tax-1 is essential for HTLV-1 replication. We recently found that Tax-1 interacts with transcription elongation factor for RNA polymerase II 2, ELL2, which enhances Tax-1-mediated transactivation of the HTLV-1 promotor. Here, we characterize the Tax-1:ELL2 interaction and its impact on viral transactivation by confocal imaging, co-immunoprecipitation, and luciferase assays. We found that Tax-1 and ELL2 not only co-precipitate, but also co-localize in dot-like structures in the nucleus. Tax-1:ELL2 complex formation occurred independently of Tax-1 point mutations, which are crucial for post translational modifications (PTMs) of Tax-1, suggesting that these PTMs are irrelevant for Tax-1:ELL2 interaction. In contrast, Tax-1 deletion mutants lacking either N-terminal (aa 1-37) or C-terminal regions (aa 150-353) of Tax-1 were impaired in interacting with ELL2. Contrary to Tax-1, the related, non-oncogenic Tax-2B from HTLV-2B did not interact with ELL2. Finally, we found that ELL2-R1 (aa 1-353), which carries an RNA polymerase II binding domain, and ELL2-R3 (aa 515-640) are sufficient to interact with Tax-1; however, only ELL2-truncations expressing R1 could enhance Tax-1-mediated transactivation of the HTLV-1 promoter. Together, this study identifies domains in Tax-1 and ELL2 being required for Tax-1:ELL2 complex formation and for viral transactivation.


Subject(s)
HTLV-I Infections/metabolism , Human T-lymphotropic virus 1/physiology , Trans-Activators/metabolism , Transcriptional Elongation Factors/metabolism , Viral Proteins/metabolism , Gene Expression Regulation, Viral , HEK293 Cells , Host-Pathogen Interactions , Human T-lymphotropic virus 1/genetics , Humans , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Point Mutation , Protein Interaction Maps , Trans-Activators/genetics , Transcriptional Activation , Viral Proteins/genetics
9.
Int J Mol Sci ; 22(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073995

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.


Subject(s)
Gene Expression Regulation, Viral/drug effects , Gene Products, tax/immunology , Gene Products, tax/metabolism , Histone Deacetylase Inhibitors/pharmacology , Human T-lymphotropic virus 1/drug effects , Leukemia-Lymphoma, Adult T-Cell/immunology , Positive Transcriptional Elongation Factor B/metabolism , Virus Latency/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Gene Expression Regulation, Viral/genetics , Gene Products, tax/genetics , Histone Deacetylase Inhibitors/therapeutic use , Histones/metabolism , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/immunology , Human T-lymphotropic virus 1/metabolism , Humans , Leukemia-Lymphoma, Adult T-Cell/metabolism , Leukemia-Lymphoma, Adult T-Cell/pathology , Leukemia-Lymphoma, Adult T-Cell/virology , Phosphorylation , Virus Latency/genetics
10.
Retrovirology ; 17(1): 30, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32912211

ABSTRACT

BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) infects primarily CD4+ T-lymphocytes and evoques severe diseases, predominantly Adult T-Cell Leukemia/ Lymphoma (ATL/L) and HTLV-1-associated Myelopathy/ Tropical Spastic Paraparesis (HAM/TSP). The viral transactivator of the pX region (Tax) is important for initiating malignant transformation, and deregulation of the major signaling pathway nuclear factor of kappa B (NF-κB) by Tax represents a hallmark of HTLV-1 driven cancer. RESULTS: Here we found that Tax mutants which are defective in NF-κB signaling showed diminished protein expression levels compared to Tax wildtype in T-cells, whereas Tax transcript levels were comparable. Strikingly, constant activation of NF-κB signaling by the constitutive active mutant of inhibitor of kappa B kinase (IKK2, IKK-ß), IKK2-EE, rescued protein expression of the NF-κB defective Tax mutants M22 and K1-10R and even increased protein levels of Tax wildtype in various T-cell lines while Tax transcript levels were only slightly affected. Using several Tax expression constructs, an increase of Tax protein occurred independent of Tax transcripts and independent of the promoter used. Further, Tax and M22 protein expression were strongly enhanced by 12-O-Tetradecanoylphorbol-13-Acetate [TPA; Phorbol 12-myristate 13-acetate (PMA)]/ ionomycin, inducers of NF-κB and cytokine signaling, but not by tumor necrosis factor alpha (TNF-α). On the other hand, co-expression of Tax with a dominant negative inhibitor of κB, IκBα-DN, or specific inhibition of IKK2 by the compound ACHP, led to a vast decrease in Tax protein levels to some extent independent of Tax transcripts in transiently transfected and Tax-transformed T-cells. Cycloheximide chase experiments revealed that co-expression of IKK2-EE prolongs the half-life of M22, and constant repression of NF-κB signaling by IκBα-DN strongly reduces protein stability of Tax wildtype suggesting that NF-κB activity is required for Tax protein stability. Finally, protein expression of Tax and M22 could be recovered by NH4Cl and PYR-41, inhibitors of the lysosome and the ubiquitin-activating enzyme E1, respectively. CONCLUSIONS: Together, these findings suggest that Tax's capability to induce NF-κB is critical for protein expression and stabilization of Tax itself. Overall, identification of this novel positive feedback loop between Tax and NF-κB in T-cells improves our understanding of Tax-driven transformation.


Subject(s)
Feedback, Physiological , Gene Products, tax/metabolism , Human T-lymphotropic virus 1/physiology , NF-kappa B p50 Subunit/metabolism , Gene Expression Regulation , Gene Products, tax/genetics , Humans , Ionomycin/pharmacology , Jurkat Cells , Mutation , NF-kappa B p50 Subunit/genetics , Protein Stability , Signal Transduction/drug effects , Tetradecanoylphorbol Acetate/pharmacology
11.
PLoS Pathog ; 16(9): e1008879, 2020 09.
Article in English | MEDLINE | ID: mdl-32997728

ABSTRACT

The Human T-cell leukemia virus type 1 (HTLV-1) orf I-encoded accessory protein p8 is cleaved from its precursor p12, and both proteins contribute to viral persistence. p8 induces cellular protrusions, which are thought to facilitate transfer of p8 to target cells and virus transmission. Host factors interacting with p8 and mediating p8 transfer are unknown. Here, we report that vasodilator-stimulated phosphoprotein (VASP), which promotes actin filament elongation, is a novel interaction partner of p8 and important for p8 and HTLV-1 Gag cell-to-cell transfer. VASP contains an Ena/VASP homology 1 (EVH1) domain that targets the protein to focal adhesions. Bioinformatics identified a short stretch in p8 (amino acids (aa) 24-45) which may mediate interactions with the EVH1 domain of VASP. Co-immunoprecipitations confirmed interactions of VASP:p8 in 293T, Jurkat and HTLV-1-infected MT-2 cells. Co-precipitation of VASP:p8 could be significantly blocked by peptides mimicking aa 26-37 of p8. Mutational studies revealed that the EVH1-domain of VASP is necessary, but not sufficient for the interaction with p8. Further, deletion of the VASP G- and F-actin binding domains significantly diminished co-precipitation of p8. Imaging identified areas of partial co-localization of VASP with p8 at the plasma membrane and in protrusive structures, which was confirmed by proximity ligation assays. Co-culture experiments revealed that p8 is transferred between Jurkat T-cells via VASP-containing conduits. Imaging and flow cytometry revealed that repression of both endogenous and overexpressed VASP by RNA interference or by CRISPR/Cas9 reduced p8 transfer to the cell surface and to target Jurkat T-cells. Stable repression of VASP by RNA interference in chronically infected MT-2 cells impaired both p8 and HTLV-1 Gag transfer to target Jurkat T-cells, while virus release was unaffected. Thus, we identified VASP as a novel interaction partner of p8, which is important for transfer of HTLV-1 p8 and Gag to target T-cells.


Subject(s)
Cell Adhesion Molecules , Focal Adhesions , Gene Products, gag , Human T-lymphotropic virus 1 , Microfilament Proteins , Phosphoproteins , T-Lymphocytes , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Focal Adhesions/chemistry , Focal Adhesions/genetics , Focal Adhesions/metabolism , Focal Adhesions/virology , Gene Products, gag/chemistry , Gene Products, gag/genetics , Gene Products, gag/metabolism , Human T-lymphotropic virus 1/chemistry , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , Humans , Jurkat Cells , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Domains , T-Lymphocytes/chemistry , T-Lymphocytes/metabolism , T-Lymphocytes/virology
12.
Front Microbiol ; 10: 2439, 2019.
Article in English | MEDLINE | ID: mdl-31708905

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent for Adult T-Cell Leukemia/Lymphoma (ATLL) and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 infects CD4+ T-cells via cell-to-cell transmission requiring reorganization of the cytoskeleton and expression of the viral transactivator and oncoprotein Tax. Viruses spread at the virological synapse (VS), a virus-induced specialized cell-cell contact, by polarized budding into synaptic clefts, and by cell surface transfer of viral biofilms (VBs). Since little is known about Tax's role in formation of the VB, we asked which component of the VB is regulated by Tax and important for HTLV-1 transmission. Collagens are not only structural proteins of the extracellular matrix and basal membrane but also represent an important component of the VB. Here, we report that among the collagens known to be present in VBs, COL4 is specifically upregulated in the presence of HTLV-1 infection. Further, we found that transient expression of Tax is sufficient to induce COL4A1 and COL4A2 transcripts in Jurkat and CCRF-CEM T-cells, while robust induction of COL4 protein requires continuous Tax expression as shown in Tax-transformed T-cell lines. Repression of Tax led to a significant reduction of COL4A1/A2 transcripts and COL4 protein. Mechanistically, luciferase-based promoter studies indicate that Tax activates the COL4A2 and, to a less extent, the COL4A1 promoter. Imaging showing partial co-localization of COL4 with the viral Gag protein in VBs at the VS and transfer of COL4 and Gag to target cells suggests a role of COL4 in VB formation. Strikingly, in chronically infected C91-PL cells, knockout of COL4A2 impaired Gag transfer between infected T-cells and acceptor T-cells, while release of virus-like particles was unaffected. Taken together, we identified COL4 (COL4A1, COL4A2) as a component of the VB and a novel cellular target of Tax with COL4A2 appearing to impact virus transmission. Thus, this study is the first to provide a link between Tax's activity and VB formation by hijacking COL4 protein functions.

13.
Front Microbiol ; 9: 400, 2018.
Article in English | MEDLINE | ID: mdl-29563906

ABSTRACT

The Human T-cell leukemia virus type 1 (HTLV-1)-encoded accessory protein p8 is cleaved from the precursor protein p12 encoded by the HTLV-1 open reading frame I. Both p12 and p8 are thought to contribute to efficient viral persistence. Mechanistically, p8 induces T-cell conjugates and cellular conduits. The latter are considered to facilitate transfer of p8 to target cells and virus transmission. Transfer of p8 between p8-expressing T-cells and recipient cells has been analyzed by immunofluorescence and live imaging. However, automatic quantitation of p8-transfer between cells has not been studied yet. Here we developed a novel method allowing time saving quantitation of p8 transfer between cells by flow cytometry. After establishing a protocol for the detection of intracellular p8 by flow cytometry and validation of p8 protein expression by western blot and immunofluorescence, we set up a co-culture assay between p8-expressing donor Jurkat T-cells and recipient Jurkat T-cells that had been prestained with a well-retained live cell dye. Upon quantitating the amount of p8 positive recipient cells with regard to the percentage of p8 expressing donor cells, time course experiments confirmed that p8 is rapidly transferred between Jurkat T-cells. We found that p8 enters approximately 5% of recipient T-cells immediately upon co-culture for 5 min. Prolonged co-culture for up to 24 h revealed an increase of relative p8 transfer to approximately 23% of the recipient cells. Immunofluorescence analysis of co-culture experiments and manual quantitation of p8 expression in fluorescence images confirmed the validity of the flow cytometry based assay. Application of the new assay revealed that manipulation of actin polymerization significantly decreased p8 transfer between Jurkat T-cells suggesting an important role of actin dynamics contributing to p8 transfer. Further, transfer of p8 to co-cultured T-cells varies between different donor cell types since p8 transfer could hardly been detected in co-cultures of 293T donor cells with Jurkat acceptor cells. In summary, our novel assay allows automatic and rapid quantitation of p8 transfer to target cells and might thus contribute to a better understanding of cellular processes and dynamics regulating p8 transfer and HTLV-1 transmission.

14.
Methods Mol Biol ; 1582: 33-46, 2017.
Article in English | MEDLINE | ID: mdl-28357660

ABSTRACT

The retrovirus Human T-lymphotropic virus type 1 (HTLV-1) preferentially infects CD4+ T-cells via cell-to-cell transmission, while cell-free infection of T-cells is inefficient. Substantial insights into the different routes of transmission have largely been obtained by imaging techniques or by flow cytometry. Recently, strategies to quantify infection events with HTLV-1 improved. In this chapter, we present two different methods to quantitate virus transmission. Both methods are based on measuring gene activity of luciferase with a cost-saving in-house luciferase assay. First, we established a reporter Jurkat T-cell line carrying a luciferase gene under the control of the HTLV-1 core promoter U3R. Upon co-culture with chronically HTLV-1-infected T-cell lines, reporter cells are infected, and upon expression of the viral transactivator Tax, the viral promoter is activated resulting in enhanced luciferase activity. However, this assay as presented here does not exclude cell fusion as the mechanism allowing intracellular Tax-dependent activation of luciferase gene expression. Therefore, we describe a second method, the single-cycle replication-dependent reporter system developed by Mazurov et al. (PLoS Pathog 6:e1000788, 2010) that allows quantitation of HTLV-1 infection in co-cultured cells. Taken together, both methods facilitate quantitation of HTLV-1 transmission and will help to unravel pathways required for cell-to-cell transmission on a quantitative basis.


Subject(s)
Flow Cytometry/methods , Genes, Reporter , HTLV-I Infections/metabolism , HTLV-I Infections/transmission , Human T-lymphotropic virus 1/metabolism , HTLV-I Infections/genetics , Human T-lymphotropic virus 1/genetics , Humans , Jurkat Cells , Luciferases/biosynthesis , Luciferases/genetics
15.
Methods Mol Biol ; 1582: 155-170, 2017.
Article in English | MEDLINE | ID: mdl-28357669

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) infects about 20 million people world-wide. Around 5% of the infected individuals develop adult T-cell leukemia (ATL) or a neurological disease termed tropical spastic paraparesis (TSP) after a clinical latency of years to decades. Through the use of two promoters and alternative splicing HTLV-1 expresses at least 12 different proteins. HTLV-1 establishes a life-long persistent infection by inducing the clonal expansion of infected cells, a property largely ascribed to the viral genes Tax and HBZ. However, the fact that ATL arises in a minority of infected individuals after a long clinical latency suggests the existence of factors counterbalancing the oncogenic potential of HTLV-1 in the context of natural infection.To study the role of the different HTLV-1 gene products in the HTLV-1 life cycle, we optimized a transfection protocol for primary T-cells using an approach based on the electroporation of in vitro-transcribed RNA. Results showed that the RNA transfection technique combines a high transfection efficiency with low toxicity, not only in Jurkat T-cells but also in primary T-cells. These findings suggest that RNA electroporation is preferable for experiments aimed at investigating the role of HTLV-1 gene products in the context of primary T-cells, which represent the main target of HTLV-1 in vivo.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Electroporation , Gene Expression , Gene Products, tax , Genes, Viral , Human T-lymphotropic virus 1 , RNA, Viral , Retroviridae Proteins , Basic-Leucine Zipper Transcription Factors/biosynthesis , Basic-Leucine Zipper Transcription Factors/genetics , Gene Products, tax/biosynthesis , Gene Products, tax/genetics , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , Humans , Jurkat Cells , RNA, Viral/genetics , RNA, Viral/metabolism , Retroviridae Proteins/biosynthesis , Retroviridae Proteins/genetics
16.
PLoS Pathog ; 12(10): e1005916, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27776189

ABSTRACT

The delta-retrovirus Human T-cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T-cells via cell-to-cell transmission. Viruses are transmitted by polarized budding and by transfer of viral biofilms at the virological synapse (VS). Formation of the VS requires the viral Tax protein and polarization of the host cytoskeleton, however, molecular mechanisms of HTLV-1 cell-to-cell transmission remain incompletely understood. Recently, we could show Tax-dependent upregulation of the actin-bundling protein Fascin (FSCN-1) in HTLV-1-infected T-cells. Here, we report that Fascin contributes to HTLV-1 transmission. Using single-cycle replication-dependent HTLV-1 reporter vectors, we found that repression of endogenous Fascin by short hairpin RNAs and by Fascin-specific nanobodies impaired gag p19 release and cell-to-cell transmission in 293T cells. In Jurkat T-cells, Tax-induced Fascin expression enhanced virus release and Fascin-dependently augmented cell-to-cell transmission to Raji/CD4+ B-cells. Repression of Fascin in HTLV-1-infected T-cells diminished virus release and gag p19 transfer to co-cultured T-cells. Spotting the mechanism, flow cytometry and automatic image analysis showed that Tax-induced T-cell conjugate formation occurred Fascin-independently. However, adhesion of HTLV-1-infected MT-2 cells in co-culture with Jurkat T-cells was reduced upon knockdown of Fascin, suggesting that Fascin contributes to dissemination of infected T-cells. Imaging of chronically infected MS-9 T-cells in co-culture with Jurkat T-cells revealed that Fascin's localization at tight cell-cell contacts is accompanied by gag polarization suggesting that Fascin directly affects the distribution of gag to budding sites, and therefore, indirectly viral transmission. In detail, we found gag clusters that are interspersed with Fascin clusters, suggesting that Fascin makes room for gag in viral biofilms. Moreover, we observed short, Fascin-containing membrane extensions surrounding gag clusters and clutching uninfected T-cells. Finally, we detected Fascin and gag in long-distance cellular protrusions. Taken together, we show for the first time that HTLV-1 usurps the host cell factor Fascin to foster virus release and cell-to-cell transmission.


Subject(s)
Carrier Proteins/metabolism , Gene Products, tax/metabolism , HTLV-I Infections/transmission , Microfilament Proteins/metabolism , Virus Release/physiology , Coculture Techniques , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockdown Techniques , HEK293 Cells , Human T-lymphotropic virus 1 , Humans , Immunoblotting , Jurkat Cells , Microscopy, Confocal , Polymerase Chain Reaction , Transfection
17.
Viruses ; 8(3): 74, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-27005656

ABSTRACT

The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1), a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4⁺ T-cells, and to a lesser extent, CD8⁺ T-cells, dendritic cells, and monocytes. Efficient infection of CD4⁺ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1) polarized budding of HTLV-1 into synaptic clefts; and (2) cell surface transfer of viral biofilms at virological synapses. In contrast to CD4⁺ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation.


Subject(s)
Cell Communication , Human T-lymphotropic virus 1/physiology , T-Lymphocytes/virology , Virus Internalization , Virus Release , Dendritic Cells/virology , Host-Pathogen Interactions , Human T-lymphotropic virus 1/growth & development , Humans , T-Lymphocytes/physiology
18.
Virology ; 485: 481-91, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26363219

ABSTRACT

Adult T-cell leukemia/lymphoma is a highly infiltrative neoplasia of CD4(+) T-lymphocytes that occurs in about 5% of carriers infected with the deltaretrovirus human T-cell leukemia virus type 1 (HTLV-1). The viral oncoprotein Tax perturbs cellular signaling pathways leading to upregulation of host cell factors, amongst them the actin-bundling protein Fascin, an invasion marker of several types of cancer. However, transcriptional regulation of Fascin by Tax is poorly understood. In this study, we identified a triple mode of transcriptional induction of Fascin by Tax, which requires (1) NF-κB-dependent promoter activation, (2) a Tax-responsive region in the Fascin promoter, and (3) a promoter-independent mechanism sensitive to the Src family kinase inhibitor PP2. Thus, Tax regulates Fascin by a multitude of signals. Beyond, using Tax-expressing and virus-transformed lymphocytes as a model system, our study is the first to identify the invasion marker Fascin as a novel target of PP2, an inhibitor of metastasis.


Subject(s)
Carrier Proteins/genetics , Gene Expression Regulation , Gene Products, tax/metabolism , Human T-lymphotropic virus 1/metabolism , Microfilament Proteins/genetics , Promoter Regions, Genetic , Carrier Proteins/metabolism , Cell Transformation, Viral , Gene Expression Regulation/drug effects , Human T-lymphotropic virus 1/genetics , Humans , Microfilament Proteins/metabolism , Models, Biological , NF-kappa B/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , T-Lymphocytes/virology , Transcriptional Activation , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...