Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Anim ; 49(2): 142-52, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25318820

ABSTRACT

This study was designed to identify whether blood fluidity differs between commercially available laboratory rat strains. The hemorheological profiles of seven clinically healthy wild-type rat strains were analyzed to determine whether any diversity in blood fluidity might affect the outcome of cardiovascular studies. Study 1: 65 healthy adult rats (Lewis, Long-Evans, Hairless, Wistar and Fisher; mixed gender and comparable ages) were compared. In order to determine the greatest possible difference, the two strains with the greatest hematocrit (HCT) differences were selected for more detailed evaluation. Red blood cell (RBC) deformability (maximum elongation index, shear stress for half-maximal deformation of RBC; both P < 0.0001), and the effect of plasma protein concentration upon plasma viscosity (P < 0.0001) were different between Lewis and Long-Evans strains. Whole blood viscosity - although different at native HCT (P < 0.004) - was unaltered following HCT standardization of samples. Differences in RBC aggregation were statistically significant but these were small and may not be clinically relevant. Study 2: these 65 animals were compared with 21 animals (10-16 weeks old; both sexes) from mutant strains (Dahl SS/JrHsdMcwiCrl, n = 10; ZDF-Lepr(fa)/Crl, n = 11). In both mutant strains, plasma and whole blood viscosity were increased compared with commonly used strains at native and standardized HCT (P < 0.001). Unusually high RBC aggregation values were seen in the ZDF rat strain (P < 0.001). It was concluded that the variability in blood fluidity among clinically healthy adult laboratory rat strains was both statistically and clinically significant. A hemorheological profile should be added to a routine phenotyping process, since both variables can significantly influence study outcomes.


Subject(s)
Erythrocyte Aggregation , Erythrocyte Deformability , Hemorheology , Rats/physiology , Animals , Female , Male , Rats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...