Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 807(Pt 3): 151004, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34666091

ABSTRACT

This work focuses on the use of green roof as a modified shallow vertical flow constructed wetland for greywater treatment in buildings. Different design parameters such as substrate (perlite or vermiculite), substrate depth (15 cm or 25 cm), and plant species (Geranium zonale, Polygala myrtifolia or Atriplex halimus) were tested to determine optimum selection. In addition, the application of a 40% recirculation rate was applied during last month of the experiment to quantify the efficiency of pollutants removal. The experiment was conducted for a period of 12 months under typical Mediterranean climatic conditions in Lesvos island, Greece. Results showed that green roofs planted with Atriplex halimus and filled with 20 cm of vermiculite had the best COD (91%), BOD (91%), TSS (93%) and turbidity (93%) average removal efficiencies. In contrast, significant lower removals were observed when the substrate depth was decreased to 10 cm (60-75%). Green roof vegetation had significant impact on TN removal as the average TN concentration decreased from 6.5 ± 1.8 mg/L in the effluent of unplanted systems to 4.9 ± 2.7 mg/L in the effluent of green roofs planted with Atriplex halimus. The recirculation of a portion of the effluent in the influent had as a result a significant improvement of turbidity, organic matter and (especially) nitrogen removal. For example, BOD removal in green roofs planted with Atriplex halimus and filled with 20 cm of perlite increased from 76% to 92%, while TN removal in green roofs planted with the same plants and filled with 20 cm of vermiculite increased from 56% to 87%. Overall, the operation of green roofs as modified vertical unsaturated constructed wetlands seems a sustainable nature-based solution for greywater treatment and reuse in urban areas.


Subject(s)
Environmental Pollutants , Greece , Nitrogen
2.
J Hazard Mater ; 394: 122493, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32240898

ABSTRACT

Raw and treated leachate samples were collected from different landfills in Greece and analyzed for several groups of emerging contaminants using high resolution mass spectrometric workflows to investigate the possible threat from their discharge to the aquatic environment. Fifty-eight compounds were detected; 2-OH-benzothiazole was found at 84 % of the samples and perfluorooctanoic acid at 68 %. Bisphenol A, valsartan and 2-OH-benzothiazole had the highest average concentrations in raw leachates, after biological treatment and after reverse osmosis, respectively. In untreated leachates, Risk Quotients > 1 were calculated for 35 and 18 compounds when maximum and average concentrations were used, indicating an ecological threat for the aquatic environment. Leachates' biological treatment partially removed COD and NH4+-N, as well as 52.3 % of total emerging contaminants. The application of reverse osmosis resulted in a 98 % removal of major pollutants, 99 % removal of total emerging contaminants and a significant decrease of ecotoxicity to Lemna minor. Beside the decrease of the detected micropollutants during treatment, RQs > 1 were still calculated for 13 and 3 compounds after biological treatment and reverse osmosis, respectively. Among these, special attention should be given to 2-OH-benzothiazole and bisphenol A that had RQ values much higher than 1 for all tested organisms.


Subject(s)
Environmental Monitoring/methods , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Araceae/drug effects , Greece , Mass Spectrometry , Risk Assessment , Water Pollutants, Chemical/toxicity
3.
Sci Total Environ ; 712: 136485, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31927447

ABSTRACT

We evaluated health risks associated with perfluorinated and polyfluorinated alkyl substances (PFASs) found in drinking water applying human risk assessment (HRA) methodology. Using data on worldwide occurrence of PFASs in drinking water and recent guidelines for PFASs in drinking water, we applied four scenarios based on different toxicological threshold values to calculate age-dependent risk quotients (RQ) for different PFASs. The mean concentrations of the most frequently detected compounds (PFOS and PFOA) were highest in North America (99.2 and 30.7 ng L-1, respectively), and lowest in Asia (PFOS: 3.0 ng L-1) and Europe (PFOA: 4.87 ng L-1). Using HRA methodology and maximum reported concentrations, only PFOS and PFOA, examined individually, showed any threat to human health. Specifically, calculations with the average and maximum concentrations of PFOS showed RQ values higher than 0.2 or 1, respectively, for some age groups under specific scenarios. Similarly, using maximum PFOA concentrations, a RQ equal to 0.2 for infants up to 3 months was calculated under scenario 4. Regional differences on RQ values were observed when PFOS concentrations from Europe, North America and Asia were used. Estimation of the human health risk due to mixtures of PFASs using average concentrations showed that the RQmix was higher than 0.2 for infants up to 3 months (scenario 3) and infants and children up to 6 years old (scenario 4). More importantly, evaluation of the guideline values set by the EU and the Health Advisory Levels issued by the USEPA resulted (under some scenarios) in RQ values higher than 0.2 for PFOS and PFOA for specific age groups, indicating that further discussion is needed for the monitoring and prioritization of these compounds.


Subject(s)
Drinking Water , Alkanesulfonic Acids , Asia , Caprylates , Child , Child, Preschool , Europe , Fluorocarbons , Humans , Infant , North America , Risk Assessment , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...