Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res X ; 23: 100222, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38646065

ABSTRACT

The use of powdered activated carbon (PAC) is a common process in advanced wastewater treatment to remove micropollutants. Retention and separation of PAC is essential as PAC loaded with micropollutants should not be released into the environment. Determining the activated carbon (AC) residual in the effluent poses a challenge, as there is currently no on-line measurement method. In this study, the correlation between turbidity, measured by scattered light, and absorption at wavelength of 550 nm (Absorption550 nm), measured by transmitted light, was investigated in relation to the AC residue. Linear correlations for turbidity (R2 = 0.95) and Absorption550 nm (R2 = 1.00) to AC concentrations were observed in both laboratory and full-scale experiments in a pilot plant where superfine PAC was added prior to Pile Cloth Media Filtration (PCMF). Decreasing the particle size (d50) while maintaining the same AC concentration leads to increased turbidity: Therefore, a fourfold reduction in d50 results in a 2- to 3-fold increase in turbidity, whereas a 30-fold reduction in d50 leads to a 6-to 8-fold increase. Furthermore, the original wastewater turbidity led to a parallel shift in the linear correlation between turbidity and AC. Coagulant doses of up to 400 mg Me3+/g AC resulted in a 50% reduction in turbidity. However, higher concentrations from 400 to 1,000 mg Me3+/g AC resulted in increased turbidity with only a 30% reduction compared to the initial turbidity. The study also highlights the significance of AC particle size in optical measurements, impacting result accuracy.

4.
Water Res ; 39(20): 5162-74, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16298416

ABSTRACT

It remains an ongoing task to quantify the uncertainty of continuous measuring systems at WWTPs during field operation. The commonly used methods are based on lab experiments under standardized conditions and are only suitable for characterizing the measuring device itself. For measuring devices under field conditions, a knowledge of the response time, trueness and precision is equally important. A method is proposed which can be used to characterize newly installed on-line sensors or to evaluate monitoring data which may contain systematic errors. The concept is based on comparative measurements between the sensor and a reference. A linear regression is used to differentiate between trueness and precision. Various statistical tests are conducted to validate the preconditions of linear regression. The information about the trueness and precision of the measuring system under field conditions helps to adapt control strategies more effectively to the relevant processes and permits sophisticated control concepts. Moreover, the concept can help to define guidelines for evaluating the uncertainties of effluent quality monitoring to overcome the concerns about on-line sensors, improve the trust in these systems and to allow the use of continuously measuring systems for legislative purposes. The approach is discussed in detail in this paper and all statistical tests and formulas are listed in the Appendix.


Subject(s)
Online Systems , Uncertainty , Waste Disposal, Fluid/instrumentation , Linear Models , Reproducibility of Results , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...