Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 71(2): 699-706, 2020 01 07.
Article in English | MEDLINE | ID: mdl-30854552

ABSTRACT

Increasing the potassium use efficiency (KUE) of crops is important for agricultural sustainability. However, a greater understanding of this complex trait is required to develop new, high-KUE cultivars. To this end, a genome-wide association study (GWAS) was applied to diverse rice (Oryza sativa L.) genotypes grown under potassium-stressed and -replete conditions. Using high-stringency criteria, the genetic architecture of KUE was uncovered, together with the breadth of physiological responses to low-potassium stress. Specifically, three quantitative trait loci (QTLs) were identified, which contained >90 candidate genes. Of these, the sodium transporter gene OsHKT2;1 emerged as a key factor that impacts on KUE based on (i) the correlation between shoot Na+ and KUE, and (ii) higher levels of HKT2;1 expression in high-KUE lines.


Subject(s)
Cation Transport Proteins/genetics , Oryza/genetics , Plant Proteins/genetics , Potassium/metabolism , Cation Transport Proteins/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...