Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37765645

ABSTRACT

The escalating presence of pathogenic microbes has spurred a heightened interest in antimicrobial polymer composites tailored for hygiene applications. These innovative composites ingeniously incorporate potent antimicrobial agents such as metals, metal oxides, and carbon derivatives. This integration equips them with the unique ability to offer robust and persistent protection against a diverse array of pathogens. By effectively countering the challenges posed by microbial contamination, these pioneering composites hold the potential to create safer environments and contribute to the advancement of public health on a substantial scale. This review discusses the recent progress of antibacterial polymer composite films with the inclusion of metals, metal oxides, and carbon derivatives, highlighting their antimicrobial activity against various pathogenic microorganisms. Furthermore, the review summarizes the recent developments in antibacterial polymer composites for display coatings, sensors, and multifunctional applications. Through a comprehensive examination of various research studies, this review aims to provide valuable insights into the design, performance, and real-time applications of these smart antimicrobial coatings for interactive devices, thus enhancing their overall user experience and safety. It concludes with an outlook on the future perspectives and challenges of antimicrobial polymer composites and their potential applications across diverse fields.

2.
ACS Appl Mater Interfaces ; 13(51): 61434-61446, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34908392

ABSTRACT

Recent studies have focused on the development of efficient, flexible, and highly sensitive ultraviolet photodetectors (UV PDs) with various wide band-gap materials. In the present study, the application of environmentally friendly zinc-aluminum layered double hydroxide (ZnAl-CO3:LDH) is demonstrated for a high-performance, flexible UV PD. The vertically oriented ZnAl:LDH nanosheets (ZnAl:LDH Ns) are facilely synthesized by dipping the sputtered 10 wt % aluminum-doped zinc oxide thin films in deionized water at room temperature. Without passivation, the UV PDs exhibit an exceptional light-to-dark current ratio of 104 and a responsivity of ∼34.7 mA/W at a bias of 1 V. Moreover, the spectral responsivity and detectivity are enhanced to ∼148.3 mA/W and 2.5 × 1012 Jones, respectively, by passivating the ZnAl:LDH Ns with polydimethylsiloxane (PDMS), thus making the device suitable for application in UV detectors. In addition, the ambient atmosphere effect on PD performance, which elucidates the clear understanding of the PD working mechanism, is also investigated. The passivation of the Ns by PDMS also helps to enhance the mechanical robustness and long-term stability of the PD. The methodology demonstrated herein highlights the potential of the ZnAl:LDH material in realizing the next generation of flexible UV PDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...