Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Immunol ; 70: 101836, 2023 11.
Article in English | MEDLINE | ID: mdl-37632992

ABSTRACT

The 'immune risk profile' has been shown to predict mortality in the elderly, highlighting the need to better understand age-related immune dysfunction. While aging leads to many defects affecting all arms of the immune system, this review is focused on the accrual of immuno-suppressive CD4 + T cell populations, including FoxP3 + regulatory T cells, and subsets of IL-10-producing T follicular helper cells. New data suggest that such accumulations constitute feedback mechanisms to temper the ongoing progressive low-grade inflammation that develops with age, the so-called "inflammaging", and by doing so, how they have the potential to promote healthier aging. However, they also impair effector immune responses, notably to infections, or vaccines. These studies also reinforce the idea that the aged immune system should not be considered as a poorly functional version of the young one, but more as a dynamic system in which CD4 + T cells, and other immune/non-immune subsets, differentiate, interact with their milieu and function differently than in young hosts. A better understanding of these unique interactions is thus needed to improve effector immune responses in the elderly, while keeping inflammaging under control.


Subject(s)
Aging , Immune System Diseases , Aged , Humans , CD4-Positive T-Lymphocytes , T-Lymphocytes, Regulatory
2.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-36993647

ABSTRACT

Our recent data showed that an aberrant IL-10-producing T follicular helper population (Tfh10) accumulates dramatically with age and is associated with age-related declines in vaccine responsiveness. Through single cell gene expression and chromatin accessibility analysis of IL-10+ and IL-10- memory CD4+ T cells from young and aged mice, we identified increased expression of CD153 on aged Tfh and Tfh10 cells. Mechanistically, we linked inflammaging (increased IL-6 levels) to elevated CD153 expression of Tfh cells through c-Maf. Surprisingly, blockade of CD153 in aged mice significantly reduced their vaccine-driven antibody response, which was associated with decreased expression of ICOS on antigen-specific Tfh cells. Combined, these data show that an IL-6/c-Maf/CD153 circuit is critical for maintaining ICOS expression. Thus, although overall Tfh-mediated B cell responses are reduced in the context of vaccines and aging, our data suggest that elevated expression of CD153 on Tfh cells potentiates the remaining Tfh function in aged mice.

3.
Sci Rep ; 12(1): 19471, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376530

ABSTRACT

Age-associated microglial dysfunction contributes to the accumulation of amyloid-ß (Aß) plaques in Alzheimer's disease. Although several studies have shown age-related declines in the phagocytic capacity of myeloid cells, relatively few have examined phagocytosis of normally aged microglia. Furthermore, much of the existing data on aging microglial function have been generated in accelerated genetic models of Alzheimer's disease. Here we found that naturally aged microglia phagocytosed less Aß over time. To gain a better understanding of such dysfunction, we assessed differences in gene expression between young and old microglia that either did or did not phagocytose Aß. Young microglia had both phagocytic and neuronal maintenance signatures indicative of normal microglial responses, whereas, old microglia, regardless of phagocytic status, exhibit signs of broad dysfunction reflective of underlying neurologic disease states. We also found downregulation of many phagocytic receptors on old microglia, including TREM2, an Aß phagocytic receptor. TREM2 protein expression was diminished in old microglia and loss of TREM2+ microglia was correlated with impaired Aß uptake, suggesting a mechanism for phagocytic dysfunction in old microglia. Combined, our work reveals that normally aged microglia have broad changes in gene expression, including defects in Aß phagocytosis that likely underlies the progression to neurologic disease.


Subject(s)
Alzheimer Disease , Microglia , Animals , Microglia/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/metabolism , Phagocytosis/genetics , Gene Expression , Disease Models, Animal
4.
Front Aging ; 2: 732414, 2021.
Article in English | MEDLINE | ID: mdl-35822048

ABSTRACT

Aging and obesity are two conditions characterized by chronic, low-grade inflammation. While both conditions are also associated with dysfunctional immune responses, the shared and distinct underlying mechanisms are just starting to be uncovered. In fact, recent findings have suggested that the effects of obesity on the immune system can be thought of as a state of accelerated aging. Here we propose that chronic, low-grade inflammation seen in obesity and aging is complex, affects multiple cell types, and results in an altered basal immune state. In aging, part of this altered state is the emergence of regulatory immune populations that lead to further immune dysfunction in an attempt to reduce chronic inflammation. While in obesity, part of the altered state is the effect of expanding adipose tissue on immune cell function. Thus, in this review, we compare, and contrast altered immune states in aging and obesity and discuss their potential contribution to a shared clinical problem- decreased vaccine responsiveness.

5.
J Immunol ; 205(1): 121-132, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32461238

ABSTRACT

Conventional dendritic cells (cDCs) are arguably the most potent APCs that induce the activation of naive T cells in response to pathogens. In addition, at steady-state, cDCs help maintain immune tolerance. Two subsets of cDCs have been extensively characterized, namely cDC1 and cDC2, each contributing differently to immune responses. Recently, another dendritic cell (DC) subset, termed merocytic DCs (mcDCs), was defined. In contrast to both cDC1 and cDC2, mcDCs reverse T cell anergy, properties that could be exploited to potentiate cancer treatments. Yet, whether mcDCs represent an unconventional DC or a cDC subset remains to be defined. In this article, we further characterize mcDCs and find that they bear true characteristics of cDC subsets. Indeed, as for cDCs, mcDCs express the cDC-restricted transcription factor Zbtb46 and display very potent APC activity. In addition, mcDC population dynamics parallels that of cDC1 and cDC2 in both reconstitution kinetic studies and parabiotic mice. We next investigated their relatedness to cDC1 and cDC2 and demonstrate that mcDCs are not dependent on cDC1-related Irf8 and Batf3 transcription factors, are dependent on Irf4, a cDC2-specific transcription factor, and express a unique transcriptomic signature. Finally, we find that cDC1, cDC2, and mcDCs all present with different metabolic phenotypes, in which mcDCs exhibit the lowest glucose uptake activity and mcDC survival is the least affected by glycolysis inhibition. Defining the properties of mcDCs in mice may help identify a functionally equivalent subset in humans leading to the development of innovative cancer immunotherapies.


Subject(s)
Dendritic Cells/immunology , Interferon Regulatory Factors/metabolism , Transcription Factors/metabolism , Animals , Clonal Anergy , Dendritic Cells/metabolism , Female , Male , Mice , Mice, Transgenic , Models, Animal , RNA-Seq , Receptors, Antigen, T-Cell/genetics
6.
Mol Biol Cell ; 27(15): 2479-92, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27251061

ABSTRACT

Developmental morphogenesis and tumor progression require a transient or stable breakdown of epithelial junctional complexes to permit programmed migration, invasion, and anoikis resistance, characteristics endowed by the epithelial-mesenchymal transition (EMT). The epithelial master-regulatory transcription factor Grainyhead-like 2 (GRHL2) suppresses and reverses EMT, causing a mesenchymal-epithelial transition to the default epithelial phenotype. Here we investigated the role of GRHL2 in tubulogenesis of Madin-Darby canine kidney cells, a process requiring transient, partial EMT. GRHL2 was required for cystogenesis, but it suppressed tubulogenesis in response to hepatocyte growth factor. Surprisingly, GRHL2 suppressed this process by inhibiting the histone acetyltransferase coactivator p300, preventing the induction of matrix metalloproteases and other p300-dependent genes required for tubulogenesis. A 13-amino acid region of GRHL2 was necessary for inhibition of p300, suppression of tubulogenesis, and interference with EMT. The results demonstrate that p300 is required for partial or complete EMT occurring in tubulogenesis or tumor progression and that GRHL2 suppresses EMT in both contexts through inhibition of p300.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , p300-CBP Transcription Factors/metabolism , Animals , Cadherins/metabolism , Cell Line, Tumor , Dogs , Epithelial-Mesenchymal Transition/physiology , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , Madin Darby Canine Kidney Cells , Morphogenesis , Transcriptional Activation , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...