Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35684865

ABSTRACT

Observations from Raman backscatter-based Fiber-Optic Distributed Sensing (FODS) require reference sections of the fiber-optic cable sensor of known temperature to translate the primary measured intensities of Stokes and anti-Stokes photons to the secondary desired temperature signal, which also commonly forms the basis for other derived quantities. Here, we present the design and the results from laboratory and field evaluations of a novel Solid-Phase Bath (SoPhaB) using ultrafine copper instead of the traditional mechanically stirred liquid-phase water bath. This novel type is suitable for all FODS applications in geosciences and industry when high accuracy and precision are needed. The SoPhaB fully encloses the fiber-optic cable which is coiled around the inner core and surrounded by tightly interlocking parts with a total weight of 22 kg. The SoPhaB is thermoelectrically heated and/or cooled using Peltier elements to control the copper body temperature within ±0.04 K using commercially available electronic components. It features two built-in reference platinum wire thermometers which can be connected to the distributed temperature sensing instrument and/or external measurement and logging devices. The SoPhaB is enclosed in an insulated carrying case, which limits the heat loss to or gains from the outside environment and allows for mobile applications. For thermally stationary outside conditions the measured spatial temperature differences across SoPhaB parts touching the fiber-optic cable are <0.05 K even for stark contrasting temperatures of ΔT> 40 K between the SoPhaB's setpoint and outside conditions. The uniform, stationary known temperature of the SoPhaB allows for substantially shorter sections of the fiber-optic cable sensors of less than <5 bins at spatial measurement resolution to achieve an even much reduced calibration bias and spatiotemporal uncertainty compared to traditional water baths. Field evaluations include deployments in contrasting environments including the Arctic polar night as well as peak summertime conditions to showcase the wide range of the SoPhaB's applicability.

2.
Front Plant Sci ; 6: 123, 2015.
Article in English | MEDLINE | ID: mdl-25806035

ABSTRACT

Budburst is a key adaptive trait that can help us understand how plants respond to a changing climate from the molecular to landscape scale. Despite this, acquisition of budburst data is constrained by a lack of information at the plant scale on the environmental stimuli associated with the release of bud dormancy. Additionally, to date, little effort has been devoted to phenotyping plants in natural populations due to the challenge of accounting for the effect of environmental variation. Nonetheless, natural selection operates on natural populations, and investigation of adaptive phenotypes in situ is warranted and can validate results from controlled laboratory experiments. To identify genomic effects on individual plant phenotypes in nature, environmental drivers must be concurrently measured, and characterized. Here, we designed and evaluated a sensor to meet these requirements for temperate woody plants. It was designed for use on a tree branch to measure the timing of budburst together with its key environmental drivers; temperature, and photoperiod. Specifically, we evaluated the sensor through independent corroboration with time-lapse photography and a suite of environmental sampling instruments. We also tested whether the presence of the device on a branch influenced the timing of budburst. Our results indicated the following: the temperatures measured by the budburst sensor's digital thermometer closely approximated the temperatures measured using a thermocouple touching plant tissue; the photoperiod detector measured ambient light with the same accuracy as did time lapse photography; the budburst sensor accurately detected the timing of budburst; and the sensor itself did not influence the budburst timing of Populus clones. Among other potential applications, future use of the sensor may provide plant phenotyping at the landscape level for integration with landscape genomics.

3.
Invest Radiol ; 41(9): 668-73, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16896301

ABSTRACT

OBJECTIVES: We sought to compare an 80-kVp coronary calcium scoring protocol with the standard protocol of 120 kVp in terms of accuracy and reproducibility and to assess its dose reduction potential. MATERIALS AND METHOD: An anthropomorphic heart phantom with calcium cylinders was scanned with different tube currents at 80 kVp and 120 kVp using a 16-slice multislice CT (MSCT) scanner. An adapted threshold for 80 kVp was calculated. Accuracy and reproducibility for calcium mass, volume, and Agatston score were analyzed using F-tests. The radiation doses needed to produce artifact-free images were determined. RESULTS: Accuracy (measurement errors: mass 120 kVp +4.6%, mass 80 kVp -6.9%, volume 120 kVp +78.8%, volume 80 kVp +58.2%) and reproducibility (F-tests: mass: P = 0.4998, volume: P = 0.9168, Agatston: P = 0.5422) were comparable at both tube voltages. Avoiding the appearance of artificial lesions, a CTDI(w,eff) of 10.7 mGy was needed at 120 kVp versus 4.6 mGy at 80 kVp (dose reduction of 57%). CONCLUSIONS: Using an 80-kVp protocol in coronary calcium scoring, a relevant dose reduction is possible without compromising reproducibility and accuracy.


Subject(s)
Calcinosis/diagnostic imaging , Calcium/analysis , Radiation Dosage , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/standards , Analysis of Variance , Calibration , Phantoms, Imaging , ROC Curve , Reproducibility of Results , Tomography Scanners, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...