Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Gene Ther Clin Dev ; 25(4): 212-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25357151

ABSTRACT

Gene delivery vectors based on adeno-associated virus (AAV) have potential utility for treatment of many genetic disorders. Current AAV vector manufacturing methods employ helper viruses to deliver functions needed to produce replication-defective recombinant AAV (rAAV) vectors, and clearance of infectious helper virus from the drug substance is essential for ensuring the safety of rAAV-based therapies. We have developed a manufacturing method for the production of rAAV vectors using a recombinant herpes simplex virus type 1 (rHSV) complementation system in suspension baby hamster kidney cells. The manufacturing process includes three primary unit operations, detergent lysis of the cell harvest and two downstream column chromatography steps, which achieve viral clearance. These unit operations inactivate and remove HSV, including replication-competent HSV present at low levels in rHSV helper stocks. Here we report results quantifying the reduction in HSV achieved during rAAV vector purification. Clearance of HSV was at least 6.84 log10 with 1% Triton X-100, 4.34 log10 with CIM Q column chromatography, and 2.86 log10 with AVB affinity chromatography. Combined, these three orthogonal methods achieved clearance of at least 14.04 log10 of HSV. The total input quantity of rHSV in a 100-liter production batch is approximately 1.2×10(12) plaque-forming units (pfu), and after purification, the concentration of residual rHSV in the resulting drug substance of approximately 450 ml would be less than 2.42×10(-5) pfu/ml. A rAAV vector produced using this method was used in a clinical trial in which subjects receive up to 100 intramuscular injections of 1.35 ml each, which would contain a maximum of 3.27×10(-3) pfu of HSV. These results support the safety of rAAV vectors produced using our rHSV complementation method.


Subject(s)
DNA, Recombinant/isolation & purification , Dependovirus/genetics , Genetic Engineering/methods , Genetic Vectors/isolation & purification , Herpesvirus 1, Human/genetics , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , DNA, Recombinant/chemistry , DNA, Recombinant/genetics , Genetic Vectors/chemistry , Genetic Vectors/genetics , Vero Cells
2.
Hum Gene Ther ; 22(2): 155-65, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20812844

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors offer promise for gene therapy of alpha-1 antitrypsin (AAT) deficiency. A toxicology study in mice evaluated intramuscular injection of an rAAV vector expressing human AAT (rAAV-CB-hAAT) produced using a herpes simplex virus (HSV) complementation system or a plasmid transfection (TFX) method at doses of 3 × 10(11) vg (1.2 × 10(13) vg/kg) for both vectors and 2 × 10(12) vg (8 × 10(13) vg/kg) for the HSV-produced vector. The HSV-produced vector had favorable in vitro characteristics in terms of purity, efficiency of transduction, and hAAT expression. There were no significant differences in clinical findings or hematology and clinical chemistry values between test article and control groups and no gross pathology findings. Histopathological examination demonstrated minimal to mild changes in skeletal muscle at the injection site, consisting of focal chronic interstitial inflammation and muscle degeneration, regeneration, and vacuolization, in vector-injected animals. At the 3 × 10(11) vg dose, serum hAAT levels were higher with the HSV-produced vector than with the TFX-produced vector. With the higher dose of HSV-produced vector, the increase in serum hAAT levels was dose-proportional in females and greater than dose-proportional in males. Vector copy numbers in blood were highest 24 hr after dosing and declined thereafter, with no detectable copies present 90 days after dosing. Antibodies to hAAT were detected in almost all vector-treated animals, and antibodies to HSV were detected in most animals that received the highest vector dose. These results support continued development of rAAV-CB-hAAT for treatment of AAT deficiency.


Subject(s)
Dependovirus/genetics , Genetic Vectors/metabolism , Simplexvirus/genetics , alpha 1-Antitrypsin Deficiency/therapy , alpha 1-Antitrypsin/genetics , Analysis of Variance , Animals , Cells, Cultured , Drug Evaluation, Preclinical , Female , Genetic Therapy , Genetic Vectors/blood , HEK293 Cells , Humans , Injections, Intramuscular , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Plasmids/genetics , Transfection
3.
Hum Gene Ther ; 21(10): 1273-85, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20486768

ABSTRACT

A recombinant adeno-associated virus serotype 2 Reference Standard Material (rAAV2 RSM) has been produced and characterized with the purpose of providing a reference standard for particle titer, vector genome titer, and infectious titer for AAV2 gene transfer vectors. Production and purification of the reference material were carried out by helper virus-free transient transfection and chromatographic purification. The purified bulk material was vialed, confirmed negative for microbial contamination, and then distributed for characterization along with standard assay protocols and assay reagents to 16 laboratories worldwide. Using statistical transformation and modeling of the raw data, mean titers and confidence intervals were determined for capsid particles ({X}, 9.18 x 10¹¹ particles/ml; 95% confidence interval [CI], 7.89 x 10¹¹ to 1.05 x 10¹² particles/ml), vector genomes ({X}, 3.28 x 10¹° vector genomes/ml; 95% CI, 2.70 x 10¹° to 4.75 x 10¹° vector genomes/ml), transducing units ({X}, 5.09 x 108 transducing units/ml; 95% CI, 2.00 x 108 to 9.60 x 108 transducing units/ml), and infectious units ({X}, 4.37 x 109 TCID50 IU/ml; 95% CI, 2.06 x 109 to 9.26 x 109 TCID50 IU/ml). Further analysis confirmed the identity of the reference material as AAV2 and the purity relative to nonvector proteins as greater than 94%. One obvious trend in the quantitative data was the degree of variation between institutions for each assay despite the relatively tight correlation of assay results within an institution. This relatively poor degree of interlaboratory precision and accuracy was apparent even though attempts were made to standardize the assays by providing detailed protocols and common reagents. This is the first time that such variation between laboratories has been thoroughly documented and the findings emphasize the need in the field for universal reference standards. The rAAV2 RSM has been deposited with the American Type Culture Collection and is available to the scientific community to calibrate laboratory-specific internal titer standards. Anticipated uses of the rAAV2 RSM are discussed.


Subject(s)
Dependovirus , Genetic Vectors , Biological Assay , DNA, Viral/chemistry , Dependovirus/classification , Dependovirus/genetics , Dependovirus/isolation & purification , Dependovirus/physiology , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Genetic Vectors/isolation & purification , Genome, Viral , Helper Viruses , Polymerase Chain Reaction , Reference Standards , Transduction, Genetic , Virus Replication
4.
Hum Gene Ther ; 20(8): 861-70, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19419276

ABSTRACT

Recombinant adeno-associated virus (rAAV) production systems capable of meeting clinical or anticipated commercial-scale manufacturing needs have received relatively little scrutiny compared with the intense research activity afforded the in vivo and in vitro evaluation of rAAV for gene transfer. Previously we have reported a highly efficient recombinant herpes simplex virus type 1 (rHSV) complementation system for rAAV production in multiple adherent cell lines; however, production in a scalable format was not demonstrated. Here we report rAAV production by rHSV coinfection of baby hamster kidney (BHK) cells grown in suspension (sBHK cells), using two ICP27-deficient rHSV vectors, one harboring a transgene flanked by the AAV2 inverted terminal repeats and a second bearing the AAV rep2 and capX genes (where X is any rAAV serotype). The rHSV coinfection of sBHK cells produced similar rAAV1/AAT-specific yields (85,400 DNase-resistant particles [DRP]/cell) compared with coinfection of adherent HEK-293 cells (74,600 DRP/cell); however, sBHK cells permitted a 3-fold reduction in the rHSV-rep2/capX vector multiplicity of infection, grew faster than HEK-293 cells, retained specific yields (DRP/cell) at higher cell densities, and had a decreased virus production cycle. Furthermore, sBHK cells were able to produce AAV serotypes 1, 2, 5, and 8 at similar specific yields, using multiple therapeutic genes. rAAV1/AAT production in sBHK cells was scaled to 10-liter disposable bioreactors, using optimized spinner flask infection conditions, and resulted in average volumetric productivities as high as 2.4 x 10(14) DRP/liter.


Subject(s)
Dependovirus/growth & development , Dependovirus/genetics , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Animals , Bioreactors , Buffers , Cell Count , Cell Line , Cell Proliferation , Cell Survival , Chromatography , Dependovirus/classification , Humans , Superinfection , Time Factors , Transgenes
5.
Mol Ther ; 8(4): 543-51, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14529826

ABSTRACT

The HSV-1 1716 mutant virus and similar oncolytic herpesviruses deficient in the gamma 34.5 neurovirulence gene are able to reduce the growth of tumors in mice. Here we demonstrate that HSV-1 1716 therapy moderately reduced the growth of tumors of the highly malignant, spontaneously metastasizing 4T1 mouse mammary carcinoma model. This moderate effect on 4T1 tumor growth was likely due to poor replication kinetics of HSV-1 1716 in 4T1 cells. Interestingly, HSV-1 therapy of the primary tumor increased the survival time of mice. Coincident with this increase was a reduction in metastases as determined by quantification of the number of metastatic cells in the lungs. HSV-1 therapy of the primary tumor was also able to reduce the establishment of a second challenge of 4T1 tumors. Moreover, infiltrates of both CD4(+) and CD8(+) T cells were detected in HSV-1 1716-treated tumors. An important role for the T cell infiltrates was confirmed when HSV-1 therapy did not reduce the growth of 4T1 tumors in SCID mice. Collectively, these results demonstrate that an HSV-dependent anti-tumor immune response is required for the reduction in primary 4T1 tumor growth and for the reduction in the establishment of metastases in this tumor model.


Subject(s)
Genetic Therapy , Genetic Vectors , Herpesvirus 1, Human , Mammary Neoplasms, Animal/drug therapy , Neoplasm Metastasis/drug therapy , Animals , Breast Neoplasms/drug therapy , Disease Models, Animal , Female , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Mice
6.
Oncogene ; 22(5): 710-21, 2003 Feb 06.
Article in English | MEDLINE | ID: mdl-12569363

ABSTRACT

While PDZ domain-containing proteins represent cellular targets for several different viral oncoproteins, including human papillomavirus E6, human T-cell leukemia virus type 1 Tax, and human adenovirus E4-ORF1, the functional consequences for such interactions have not been elucidated. Here we report that, at the plasma membrane of cells, the adenovirus E4-ORF1 oncoprotein selectively and potently stimulates phosphatidylinositol 3-kinase (PI3K), triggering a downstream cascade of events that includes activation of both protein kinase B and p70S6-kinase. This activity of E4-ORF1 could be abrogated by overexpression of its PDZ-protein targets or by disruption of its PDZ domain-binding motif, which was shown to mediate complex formation between E4-ORF1 and PDZ proteins at the plasma membrane of cells. Furthermore, E4-ORF1 mutants unable to activate the PI3K pathway failed to transform cells in culture or to promote tumors in animals, and drugs that block either PI3K or p70S6-kinase inhibited E4-ORF1-induced transformation of cells. From these results, we propose that the transforming and tumorigenic potentials of the adenovirus E4-ORF1 oncoprotein depend on its capacity to activate PI3K through a novel PDZ protein-dependent mechanism of action.


Subject(s)
Adenovirus E4 Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Adenovirus E4 Proteins/drug effects , Adenovirus E4 Proteins/genetics , Animals , Cell Cycle Proteins/metabolism , Chromones/pharmacology , Cyclin-Dependent Kinase Inhibitor p27 , DNA-Binding Proteins/metabolism , Forkhead Transcription Factors , Mammary Neoplasms, Animal/etiology , Morpholines/pharmacology , Mutation , Nerve Tissue Proteins , Rats , Rats, Inbred WF , Sirolimus/pharmacology , Transcription Factors/metabolism , Transfection , Tumor Suppressor Proteins/metabolism
7.
J Virol ; 76(2): 532-40, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11752144

ABSTRACT

The herpes simplex virus type 1 (HSV-1) 2-kb latency-associated transcript (LAT) is a stable intron, which accumulates in cells both lytically and latently infected with HSV-1. We have used a tetracycline-repressible expression system to determine the half-life of the 2-kb LAT RNA intron in the human neuroblastoma cell line SY5Y. Using Northern hybridization analyses of RNA isolated from transiently transfected SY5Y cells over time after repression of LAT expression, we measured the half-life of the 2-kb LAT to be approximately 24 h. Thus, unlike typical introns that are rapidly degraded in a matter of seconds following excision, the 2-kb LAT intron has a half-life similar to those of some of the more stable cellular mRNAs. Furthermore, a similar half-life was measured for the 2-kb LAT in transiently transfected nonneuronal monkey COS-1 cells, suggesting that the stability of the 2-kb LAT is neither cell type nor species specific. Previously, we found that the determinant responsible for the unusual stability of the 2-kb LAT maps to the 3' terminus of the intron. At this site is a nonconsensus intron branch point located adjacent to a predicted stem-loop structure that is hypothesized to prevent debranching by cellular enzymes. Here we show that mutations which alter the predicted stem-loop structure, such that branching is redirected, either reduce or abolish the stability of the 2-kb LAT intron.


Subject(s)
Herpesvirus 1, Human/genetics , Introns/genetics , RNA Stability , RNA, Untranslated/metabolism , RNA, Viral/metabolism , Virus Latency/genetics , Animals , Base Sequence , COS Cells , Gene Expression Regulation/drug effects , Half-Life , Humans , Mutation/genetics , Organ Specificity , RNA Stability/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , RNA, Viral/genetics , Species Specificity , Tetracycline/pharmacology , Time Factors , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...