Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Nucleic Acids Res ; 52(7): 4002-4020, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38321934

ABSTRACT

Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.


Subject(s)
Muscle Development , Muscle Fibers, Skeletal , Myogenin , RNA, Messenger , Tankyrases , Tankyrases/metabolism , Tankyrases/genetics , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Muscle Development/genetics , Animals , Muscle Fibers, Skeletal/metabolism , Mice , Myogenin/genetics , Myogenin/metabolism , Nucleophosmin , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , RNA Stability/genetics , Poly ADP Ribosylation/genetics , Cell Line , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Cell Differentiation/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , HEK293 Cells
2.
FEBS J ; 290(16): 3963-3965, 2023 08.
Article in English | MEDLINE | ID: mdl-37013685

ABSTRACT

N-linked glycans are specifically attached to asparagine residues in a N-X-S/T motif of secretory pathway glycoproteins. N-glycosylation of newly synthesized glycoproteins directs their folding via the lectin chaperones calnexin and calreticulin that are associated with protein-folding enzymes and glycosidases of the endoplasmic reticulum (ER). Misfolded glycoproteins are retained in the ER by the same lectin chaperones. The work by Sun et al. (FEBS J 2023, 10.1111/febs.16757) in this issue focusses on hepsin, a serine protease on the surface of liver and other organs. The authors deduce that spatial positioning of N-glycans on one side of a conserved domain of hepsin, known as the scavenger receptor-rich cysteine domain, regulates calnexin selection for hepsin maturation and transport through the secretory pathway. If N-glycosylation is elsewhere on hepsin, then it is misfolded and has a prolonged accumulation with calnexin and BiP. This association coincides with the engagement of stress response pathways that sense glycoprotein misfolding. The topological considerations of N-glycosylation dissected by Sun et al. may help unravel how key sites of N-glycosylation sites required for protein folding and transport have evolved to select the lectin chaperone calnexin pathway for folding and quality control.


Subject(s)
Serine Proteases , Calnexin/genetics , Calnexin/metabolism , Calreticulin/metabolism , Glycoproteins/metabolism , Glycosylation , Lectins/genetics , Lectins/metabolism , Molecular Chaperones/metabolism , Polysaccharides/metabolism , Protein Folding , Quality Control
3.
Am J Respir Cell Mol Biol ; 69(3): 281-294, 2023 09.
Article in English | MEDLINE | ID: mdl-36952679

ABSTRACT

CFTR (cystic fibrosis transmembrane conductance regulator) is a tightly regulated anion channel that mediates chloride and bicarbonate conductance in many epithelia and in other tissues, but whether its regulation varies depending on the cell type has not been investigated. Epithelial CFTR expression is highest in rare cells called ionocytes. We studied CFTR regulation in control and ionocyte-enriched cultures by transducing bronchial basal cells with adenoviruses that encode only eGFP or FOXI1 (forkhead box I1) + eGFP as separate polypeptides. FOXI1 dramatically increased the number of transcripts for ionocyte markers ASCL3 (Achaete-Scute Family BHLH Transcription Factor 3), BSND, ATP6V1G3, ATP6V0D2, KCNMA1, and CFTR without altering those for secretory (SCGB1A1), basal (KRT5, KRT6, TP63), goblet (MUC5AC), or ciliated (FOXJ1) cells. The number of cells displaying strong FOXI1 expression was increased 7-fold, and there was no evidence for a broad increase in background immunofluorescence. Total CFTR mRNA and protein levels increased 10-fold and 2.5-fold, respectively. Ionocyte-enriched cultures displayed elevated basal current, increased adenylyl cyclase 5 expression, and tonic suppression of CFTR activity by the phosphodiesterase PDE1C, which has not been shown previously to regulate CFTR activity. The results indicate that CFTR regulation depends on cell type and identifies PDE1C as a potential target for therapeutics that aim to increase CFTR function specifically in ionocytes.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial Cells , Bronchi/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelium/metabolism , Ion Transport , Humans
4.
Am J Physiol Cell Physiol ; 323(5): C1374-C1392, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36121129

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a leading cause of death and cigarette smoke is the main risk factor. Detecting its earliest stages and preventing a decline in lung function are key goals. The pathogenesis of COPD is complex but has some similarities to cystic fibrosis (CF), a disease caused by mutations in the cftr gene. CF leads to chronic inflammation, abnormal mucus, and cycles of infection. Cigarette smoke exposure also causes CFTR dysfunction, and it is probably not a coincidence that inflammation, mucus obstruction, and infections are also characteristics of COPD, although the exacerbations can be quite different. We review here the acute effects of cigarette smoke on CFTR function and its potential role in COPD. Understanding CFTR regulation by cigarette smoke may identify novel drug targets and facilitate the development of therapeutics that reduce the progression and severity of COPD.


Subject(s)
Cigarette Smoking , Cystic Fibrosis , Pulmonary Disease, Chronic Obstructive , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cigarette Smoking/adverse effects , Pulmonary Disease, Chronic Obstructive/genetics , Cystic Fibrosis/genetics , Nicotiana , Inflammation
5.
Nat Commun ; 13(1): 3586, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739107

ABSTRACT

Impaired activity of the chloride channel CFTR is the cause of cystic fibrosis. 14-3-3 proteins have been shown to stabilize CFTR and increase its biogenesis and activity. Here, we report the identification and mechanism of action of a macrocycle stabilizing the 14-3-3/CFTR complex. This molecule rescues plasma membrane localization and chloride transport of F508del-CFTR and works additively with the CFTR pharmacological chaperone corrector lumacaftor (VX-809) and the triple combination Trikafta®. This macrocycle is a useful tool to study the CFTR/14-3-3 interaction and the potential of molecular glues in cystic fibrosis therapeutics.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Aminophenols/metabolism , Aminopyridines/metabolism , Aminopyridines/pharmacology , Cell Membrane/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Mutation
6.
Sci Rep ; 12(1): 4595, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35302062

ABSTRACT

Most cases of cystic fibrosis (CF) are caused by class 2 mutations in the cystic fibrosis transmembrane regulator (CFTR). These proteins preserve some channel function but are retained in the endoplasmic reticulum (ER). Partial rescue of the most common CFTR class 2 mutant, F508del-CFTR, has been achieved through the development of pharmacological chaperones (Tezacaftor and Elexacaftor) that bind CFTR directly. However, it is not clear whether these drugs will rescue all class 2 CFTR mutants to a medically relevant level. We have previously shown that the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen can correct F508del-CFTR trafficking. Here, we utilized RNAi and pharmacological inhibitors to determine the mechanism of action of the NSAID glafenine. Using cellular thermal stability assays (CETSAs), we show that it is a proteostasis modulator. Using medicinal chemistry, we identified a derivative with a fourfold increase in CFTR corrector potency. Furthermore, we show that these novel arachidonic acid pathway inhibitors can rescue difficult-to-correct class 2 mutants, such as G85E-CFTR > 13%, that of non-CF cells in well-differentiated HBE cells. Thus, the results suggest that targeting the arachidonic acid pathway may be a profitable way of developing correctors of certain previously hard-to-correct class 2 CFTR mutations.


Subject(s)
Cystic Fibrosis , Glafenine , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arachidonic Acid , Cyclooxygenase 2/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Glafenine/therapeutic use , Humans , Mutation
7.
Cells ; 11(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-35011698

ABSTRACT

Although some therapeutic progress has been achieved in developing small molecules that correct F508del-CFTR defects, the mechanism of action (MoA) of these compounds remain poorly elucidated. Here, we investigated the effects and MoA of MCG1516A, a newly developed F508del-CFTR corrector. MCG1516A effects on wild-type (WT) and F508del-CFTR were assessed by immunofluorescence microscopy, and biochemical and functional assays both in cell lines and in intestinal organoids. To shed light on the MoA of MCG1516A, we evaluated its additivity to the FDA-approved corrector VX-661, low temperature, genetic revertants of F508del-CFTR (G550E, R1070W, and 4RK), and the traffic-null variant DD/AA. Finally, we explored the ability of MCG1516A to rescue trafficking and function of other CF-causing mutations. We found that MCG1516A rescues F508del-CFTR with additive effects to VX-661. A similar behavior was observed for WT-CFTR. Under low temperature incubation, F508del-CFTR demonstrated an additivity in processing and function with VX-661, but not with MCG1516A. In contrast, both compounds promoted additional effects to low temperature to WT-CFTR. MCG1516A demonstrated additivity to genetic revertant R1070W, while VX-661 was additive to G550E and 4RK. Nevertheless, none of these compounds rescued DD/AA trafficking. Both MCG1516A and VX-661 rescued CFTR processing of L206W- and R334W-CFTR with greater effects when these compounds were combined. In summary, the absence of additivity of MCG1516A to genetic revertant G550E suggests a putative binding site for this compound on NBD1:NBD2 interface. Therefore, a combination of MCG1516A with compounds able to rescue DD/AA traffic, or mimicking the actions of revertant R1070W (e.g., VX-661), could enhance correction of F508del-CFTR defects.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/genetics , Drug Discovery/methods , Humans , Mutation , Protein Folding
8.
Sci Rep ; 11(1): 23256, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853321

ABSTRACT

There is evidence that the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is highly expressed at the apical pole of ciliated cells in human bronchial epithelium (HBE), however recent studies have detected little CFTR mRNA in those cells. To understand this discrepancy we immunostained well differentiated primary HBE cells using CFTR antibodies. We confirmed apical immunofluorescence in ciliated cells and quantified the covariance of the fluorescence signals and that of an antibody against the ciliary marker centrin-2 using image cross-correlation spectroscopy (ICCS). Super-resolution stimulated emission depletion (STED) imaging localized the immunofluorescence in distinct clusters at the bases of the cilia. However, similar apical fluorescence was observed when the monoclonal CFTR antibodies 596, 528 and 769 were used to immunostain ciliated cells expressing F508del-CFTR, or cells lacking CFTR due to a Class I mutation. A BLAST search using the CFTR epitope identified a similar amino acid sequence in the ciliary protein rootletin X1. Its expression level correlated with the intensity of immunostaining by CFTR antibodies and it was detected by 596 antibody after transfection into CFBE cells. These results may explain the high apparent expression of CFTR in ciliated cells and reports of anomalous apical immunofluorescence in well differentiated cells that express F508del-CFTR.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/isolation & purification , Cystic Fibrosis/pathology , Cytoskeletal Proteins/isolation & purification , Bronchi/cytology , Cells, Cultured , Cilia/metabolism , Cilia/pathology , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/immunology , Cytoskeletal Proteins/immunology , Epithelial Cells , Fluorescent Antibody Technique , Humans
9.
Cell Physiol Biochem ; 55(6): 784-804, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34936285

ABSTRACT

BACKGROUND/AIMS: Cystic fibrosis transmembrane conductance regulator (CFTR), the anion channel that is defective in cystic fibrosis (CF), is phosphorylated and activated by cAMP-dependent protein kinase (PKA). cAMP levels are downregulated by a large family of phosphodiesterases that have variable expression in different cell types. We have previously observed high levels of PDE8A expression in well-differentiated primary human bronchial epithelial (pHBE) cells and thus aimed to assess whether it played a role in cAMP-dependent regulation of CFTR activity. METHODS: We assessed the effect of the selective PDE8 inhibitor PF-04957325 (PF) on intracellular cAMP levels ([cAMP]i) in well differentiated pHBE cells from non-CF or CF donors and also in CFBE41o- cells that stably express wild-type CFTR (CFBE41o- WT) using ELISA and FRET-FLIM microscopy. CFTR channel function was also measured using electrophysiological recordings from pHBE and CFBE41o- WT cells mounted in Ussing Chambers. RESULTS: PDE8 inhibition elevated [cAMP]i in well-differentiated pHBE cells and stimulated wild-type CFTR-dependent ion transport under basal conditions or after cells had been pre-stimulated with physiological cAMP-elevating agents. The response to PDE8 inhibition was larger than to PDE3 or PDE5 inhibition but smaller and synergistic with that elicited by PDE4 inhibition. CRISPR Cas9-mediated knockdown of PDE8A enhanced CFTR gene and protein expression yet reduced the effect of PDE8 inhibition. Acute pharmacological inhibition PDE8 increased CFTR activity in CF pHBE cells (F508del/F508del and F508del/R117H-5T) treated with clinically-approved CFTR modulators. CONCLUSION: These results provide the first evidence that PDE8A regulates CFTR and identifies PDE8A as a potential target for adjunct therapies to treat CF.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/metabolism , Epithelial Cells/metabolism , Respiratory Mucosa/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , Animals , Cell Line , Cricetinae , Cyclic AMP/genetics , Cyclic AMP/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/pathology , Humans , Respiratory Mucosa/pathology
10.
Pharmacol Ther ; 224: 107826, 2021 08.
Article in English | MEDLINE | ID: mdl-33662448

ABSTRACT

Cystic Fibrosis (CF) lung disease results from mutations in the CFTR anion channel that reduce anion and fluid secretion by airway epithelia. Impaired secretion compromises airway innate defence mechanisms and leads to bacterial colonization, excessive inflammation and tissue damage; thus, restoration of CFTR function is the goal of many CF therapies. CFTR channels are activated by cyclic nucleotide-dependent protein kinases. The second messengers 3'5'-cAMP and 3'5'-cGMP are hydrolysed by a large family of cyclic nucleotide phosphodiesterases that provide subcellular spatial and temporal control of cyclic nucleotide-dependent signalling. Selective inhibition of these enzymes elevates cyclic nucleotide levels, leading to activation of CFTR and other downstream effectors. Here we examine members of the PDE family that are likely to regulate CFTR-dependent ion and fluid secretion in the airways and discuss other actions of PDE inhibitors that can influence cyclic nucleotide-regulated mucociliary transport, inflammation and bronchodilation. Finally, we review PDE inhibitors and the potential benefits they could provide as CF therapeutics.


Subject(s)
Cystic Fibrosis , Nucleotides, Cyclic , Phosphodiesterase Inhibitors , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Inflammation , Nucleotides, Cyclic/pharmacology , Phosphodiesterase Inhibitors/pharmacology
11.
ACS Omega ; 5(40): 25593-25604, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33073085

ABSTRACT

The marine natural product latonduine A (1) shows F508del-cystic fibrosis transmembrane regulator (CFTR) corrector activity in cell-based assays. Pull-down experiments, enzyme inhibition assays, and siRNA knockdown experiments suggest that the F508del-CFTR corrector activities of latonduine A and a synthetic analogue MCG315 (4) result from simultaneous inhibition of PARP3 and PARP16. A library of synthetic latonduine A analogs has been prepared in an attempt to separate the PARP3 and PARP16 inhibitory properties of latonduine A with the goal of discovering selective small-molecule PARP3 and PARP16 inhibitory cell biology tools that could confirm the proposed dual-target F508del-CFTR corrector mechanism of action. The structure activity relationship (SAR) study reported herein has resulted in the discovery of the modestly potent (IC50 3.1 µM) PARP3 selective inhibitor (±)-5-hydroxy-4-phenyl-2,3,4,5-tetrahydro-1H-benzo[c]azepin-1-one (5) that shows 96-fold greater potency for inhibition of PARP3 compared with its inhibition of PARP16 in vitro and the potent (IC50 0.362 µM) PARP16 selective inhibitor (±)-7,8-dichloro-5-hydroxy-4-(pyridin-2-yl)-2,3,4,5-tetrahydro-1H-benzo[c]azepin-1-one (6) that shows 205-fold selectivity for PARP16 compared with PARP3 in vitro. At 1 or 10 µM, neither 5 or 6 alone showed F508del-CFTR corrector activity, but when added together at 1 or 10 µM each, the combination exhibited F508del-CFTR corrector activity identical to 1 or 10 µM latonduine A (1), respectively, supporting its novel dual PARP target mechanism of action. Latonduine A (1) showed additive in vitro corrector activity in combination with the clinically approved corrector VX809, making it a potential new partner for cystic fibrosis combination drug therapies.

12.
iScience ; 23(9): 101447, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32829283

ABSTRACT

Events at a receptor ectodomain affect the intracellular domain conformation, activating signal transduction (out-to-in conformational effects). We investigated the reverse direction (in-to-out) where the intracellular domain may impact on ectodomain conformation. The primary sequences of naturally occurring TrkC receptor isoforms (TrkC-FL and TrkC.T1) only differ at the intracellular domain. However, owing to their differential association with Protein Disulfide Isomerase the isoforms have different disulfide bonding and conformations at the ectodomain. Conformations were exploited to develop artificial ligands, mAbs, and small molecules, with isoform-specific binding and biased activation. Consistent, the physiological ligands NT-3 and PTP-sigma bind both isoforms, but NT-3 activates all signaling pathways, whereas PTP-sigma activates biased signals. Our data support an "in-to-out" model controlling receptor ectodomain conformation, a strategy that enables heterogeneity in receptors, ligands, and bioactivity. These concepts may be extended to the many wild-type or oncogenic receptors with known isoforms.

13.
Biochem Pharmacol ; 180: 114133, 2020 10.
Article in English | MEDLINE | ID: mdl-32628927

ABSTRACT

Despite progress in developing pharmacotherapies to rescue F508del-CFTR, the most prevalent Cystic Fibrosis (CF)-causing mutation, individuals homozygous for this mutation still face several disease-related symptoms. Thus, more potent compound combinations are still needed. Here, we investigated the mechanism of action (MoA) of RDR01752, a novel F508del-CFTR trafficking corrector. F508del-CFTR correction by RDR01752 was assessed by biochemical, immunofluorescence microscopy and functional assays in cell lines and in intestinal organoids. To determine the MoA of RDR01752, we assessed its additive effects to those of genetic revertants of F508del-CFTR, the FDA-approved corrector drugs VX-809 and VX-661, and low temperature. Our data demonstrated that RDR01752 rescues F508del-CFTR processing and plasma membrane (PM) expression to similar levels of VX-809 in cell lines, although RDR01752 produced lower functional rescue. However, in functional assays using intestinal organoids (F508del/F508del), RDR01752, VX-809 and VX-661 had similar efficacy. RDR01752 demonstrated additivity to revertants 4RK and G550E, but not to R1070W, as previously shown for VX-809. RDR01752 was also additive to low temperature. Co-treatment of RDR01752 and VX-809 did not increase F508del-CFTR PM expression and function compared to each corrector alone. The lack of additivity of RDR01752 with the genetic revertant R1070W suggests that this compound has the same effect as the insertion of tryptophan at 1070, i.e., filling the pocket at the NBD1:ICL4 interface in F508del-CFTR, similarly to VX-809. Combination of RDR01752 with correctors mimicking the rescue by revertants G550E or 4RK could thus maximize rescue of F508del-CFTR.


Subject(s)
Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Indoles/pharmacology , Bronchi/drug effects , Bronchi/metabolism , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Discovery , Humans , Mutation , Organoids/drug effects , Organoids/metabolism , Protein Transport/drug effects , Protein Transport/genetics
14.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L908-L920, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32159371

ABSTRACT

Over 2,000 mutations have been reported in the cystic fibrosis transmembrane conductance regulator (cftr) gene, many of which cause disease but are rare and have no effective treatment. Thus, there is an unmet need for new, mutation-agnostic therapies for cystic fibrosis (CF). Phosphodiesterase (PDE) inhibitors are one such class of therapeutics that have been shown to elevate intracellular cAMP levels and stimulate CFTR-dependent anion secretion in human airway epithelia; however, the number of people with CF that could be helped by PDE inhibitors remains to be determined. Here we used Fisher rat thyroid (FRT) cells stably transduced with rare human CFTR mutants and studied their responsiveness to the dual phosphodiesterase 3/4 inhibitor RPL554 (Verona Pharma). Through its inhibitory effect on PDE4D, we find that RPL554 can elevate intracellular cAMP leading to a potentiation of forskolin-stimulated current mediated by R334W, T338I, G551D, and S549R mutants of CFTR when used alone or in combination with CFTR modulators. We also were able to reproduce these effects of RPL554 on G551D-CFTR when it was expressed in primary human bronchial epithelial cells, indicating that RPL554 would have stimulatory effects on rare CFTR mutants in human airways and validating FRT cells as a model for PDE inhibitor studies. Furthermore, we provide biochemical evidence that VX-809 causes surprisingly robust correction of several class III and IV CFTR mutants. Together, our findings further support the therapeutic potential of RPL554 for patients with CF with class III/IV mutations and emphasize the potential of PDEs as potential drug targets that could benefit patients with CF.


Subject(s)
Cyclic AMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Isoquinolines/pharmacology , Phosphodiesterase 3 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Pyrimidinones/pharmacology , Thyroid Epithelial Cells/drug effects , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Bronchi/cytology , Bronchi/drug effects , Bronchi/metabolism , Cell Line , Colforsin/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/agonists , Cystic Fibrosis Transmembrane Conductance Regulator/classification , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Mutation , Primary Cell Culture , Rats , Rats, Inbred F344 , Thyroid Epithelial Cells/cytology , Thyroid Epithelial Cells/metabolism , Transgenes
15.
J Biol Chem ; 294(48): 18269-18284, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31645438

ABSTRACT

Mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) disrupt epithelial secretion and cause cystic fibrosis (CF). Available CFTR modulators provide only modest clinical benefits, so alternative therapeutic targets are being explored. The anion-conducting transporter solute carrier family 26 member 9 (SLC26A9) is a promising candidate, but its functional expression is drastically reduced in cells that express the most common CF-associated CFTR variant, F508del-CFTR, through mechanisms that remain incompletely understood. Here, we examined the metabolic stability and location of SLC26A9 and its relationship to CFTR. Compared with SLC26A9 levels in BHK cells expressing SLC26A9 alone or with WT-CFTR, co-expression of SLC26A9 with F508del-CFTR reduced total and plasma membrane levels of SLC26A9. Proteasome inhibitors increased SLC26A9 immunofluorescence in primary human bronchial epithelial cells (pHBEs) homozygous for F508del-CFTR but not in non-CF pHBEs, suggesting that F508del-CFTR enhances proteasomal SLC26A9 degradation. Apical SLC26A9 expression increased when F508del-CFTR trafficking was partially corrected by low temperature or with the CFTR modulator VX-809. The immature glycoforms of SLC26A9 and CFTR co-immunoprecipitated, consistent with their interaction in the endoplasmic reticulum (ER). Transfection with increasing amounts of WT-CFTR cDNA progressively increased SLC26A9 levels in F508del-CFTR-expressing cells, suggesting that WT-CFTR competes with F508del-CFTR for SLC26A9 binding. Immunofluorescence staining of endogenous SLC26A9 and transfection of a 3HA-tagged construct into well-differentiated cells revealed that SLC26A9 is mostly present at tight junctions. We conclude that SLC26A9 interacts with CFTR in both the ER and Golgi and that its interaction with F508del-CFTR increases proteasomal SLC26A9 degradation.


Subject(s)
Antiporters/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Gene Expression , Proteasome Endopeptidase Complex/metabolism , Sulfate Transporters/genetics , Tight Junctions/metabolism , Animals , Antiporters/metabolism , Bronchi/cytology , Cell Line , Cell Membrane/metabolism , Cells, Cultured , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Mutation , Proteolysis , Sulfate Transporters/metabolism
16.
Expert Opin Ther Targets ; 23(8): 711-724, 2019 08.
Article in English | MEDLINE | ID: mdl-31169041

ABSTRACT

Introduction: Cystic fibrosis (CF) is the most frequent lethal orphan disease and is caused by mutations in the CFTR gene. The most frequent mutation F508del-CFTR affects multiple organs; infections and subsequent infections and complications in the lung lead to death. Areas covered: This review focuses on new targets and mechanisms that are attracting interest for the development of CF therapies. The F508del-CFTR protein is retained in the endoplasmic reticulum (ER) but has some function if it can traffic to the plasma membrane. Cell-based assays have been used to screen chemical libraries for small molecule correctors that restore its trafficking. Pharmacological chaperones are correctors that bind directly to the F508del-CFTR mutant and promote its folding and trafficking. Other correctors fall into a heterogeneous class of proteostasis modulators that act indirectly by altering cellular homeostasis. Expert opinion: Pharmacological chaperones have so far been the most successful correctors of F508del-CFTR trafficking, but their level of correction means that more than one corrector is required. Proteostasis modulators have low levels of correction but hold promise because some can correct several different CFTR mutations. Identification of their cellular targets and the potential for development may lead to new therapies for CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Molecular Targeted Therapy , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Development , Endoplasmic Reticulum/metabolism , Humans , Mutation , Protein Folding
17.
EMBO Mol Med ; 11(6)2019 06.
Article in English | MEDLINE | ID: mdl-31040128

ABSTRACT

Anterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Mucoproteins/metabolism , Oncogene Proteins/metabolism , Protein Multimerization , Proteostasis , Animals , Endoplasmic Reticulum/genetics , HEK293 Cells , Humans , Male , Mice , Mucoproteins/genetics , Oncogene Proteins/genetics
18.
Sci Rep ; 8(1): 11404, 2018 07 30.
Article in English | MEDLINE | ID: mdl-30061653

ABSTRACT

Pharmacological chaperones (e.g. VX-809, lumacaftor) that bind directly to F508del-CFTR and correct its mislocalization are promising therapeutics for Cystic Fibrosis (CF). However to date, individual correctors provide only ~4% improvement in lung function measured as FEV1, suggesting that multiple drugs will be needed to achieve substantial clinical benefit. Here we examine if multiple sites for pharmacological chaperones exist and can be targeted to enhance the rescue of F508del-CFTR with the premise that additive or synergistic rescue by multiple pharmacological chaperones compared to single correctors indicates that they have different sites of action. First, we found that a combination of the pharmacological chaperones VX-809 and RDR1 provide additive correction of F508del-CFTR. Then using cellular thermal stability assays (CETSA) we demonstrated the possibility of a third pharmacologically important site using the novel pharmacological chaperone tool compound 4-methyl-N-[3-(morpholin-4-yl) quinoxalin-2-yl] benzenesulfonamide (MCG1516A). All three pharmacological chaperones appear to interact with the first nucleotide-binding domain (NBD1). The triple combination of MCG1516A, RDR1, and VX-809 restored CFTR function to >20% that of non-CF cells in well differentiated HBE cells and to much higher levels in other cell types. Thus the results suggest the presence of at least three distinct sites for pharmacological chaperones on F508del-CFTR NBD1, encouraging the development of triple corrector combinations.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Cell Line , Cell Polarity/drug effects , Drug Synergism , Drug Therapy, Combination , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Membrane Potentials/drug effects , Mutation/genetics , Protein Domains
19.
Front Pharmacol ; 9: 1490, 2018.
Article in English | MEDLINE | ID: mdl-30618775

ABSTRACT

Interest in precision medicine has grown in recent years due to the variable clinical benefit provided by some medications, their cost, and by new opportunities to tailor therapies to individual patients. In cystic fibrosis it may soon be possible to test several corrector drugs that improve the folding and functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) prospectively using cells from a patient to find the one that is best for that individual. Patient-to-patient variation in cell culture responses to correctors and the reproducibility of those responses has not been studied quantitatively. We measured the functional correction provided by lumacaftor (VX-809) using bronchial epithelial cells from 20 patients homozygous for the F508del-CFTR mutation. Significant differences were observed between individuals, supporting the utility of prospective testing. However, when correction of F508del-CFTR was measured repeatedly using cell aliquots from the same individuals, a design effect was observed that would impact statistical tests of significance. The results suggest that the sample size obtained from power calculations should be increased to compensate for group sampling when CFTR corrector drugs are compared in vitro for precision medicine.

20.
Am J Physiol Cell Physiol ; 314(1): C118-C134, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28978522

ABSTRACT

Air pollution stimulates airway epithelial secretion through a cholinergic reflex that is unaffected in cystic fibrosis (CF), yet a strong correlation is observed between passive smoke exposure in the home and impaired lung function in CF children. Our aim was to study the effects of low smoke concentrations on cystic fibrosis transmembrane conductance regulator (CFTR) function in vitro. Cigarette smoke extract stimulated robust anion secretion that was transient, mediated by CFTR, and dependent on cAMP-dependent protein kinase activation. Secretion was initiated by reactive oxygen species (ROS) and mediated by at least two distinct pathways: autocrine activation of EP4 prostanoid receptors and stimulation of Ca2+ store-operated cAMP signaling. The response was absent in cells expressing the most common disease-causing mutant F508del-CFTR. In addition to the initial secretion, prolonged exposure of non-CF bronchial epithelial cells to low levels of smoke also caused a gradual decline in CFTR functional expression. F508del-CFTR channels that had been rescued by the CF drug combination VX-809 (lumacaftor) + VX-770 (ivacaftor) were more sensitive to this downregulation than wild-type CFTR. The results suggest that CFTR-mediated secretion during acute cigarette smoke exposure initially protects the airway epithelium while prolonged exposure reduces CFTR functional expression and reduces the efficacy of CF drugs.


Subject(s)
Bronchi/drug effects , Cyclic AMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/agonists , Epithelial Cells/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Tobacco Smoke Pollution/adverse effects , Aminophenols/pharmacology , Aminopyridines/pharmacology , Autocrine Communication/drug effects , Benzodioxoles/pharmacology , Bronchi/metabolism , Bronchi/pathology , Calcium Signaling/drug effects , Cell Line , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Mutation , Quinolones/pharmacology , Receptors, Prostaglandin E, EP4 Subtype/agonists , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Second Messenger Systems/drug effects , Secretory Pathway/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...