Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; : e202400232, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747628

ABSTRACT

Cobalt complexes exhibit versatile reactivity with nitric oxide (NO), enabling their utilization in applications ranging from homogeneous catalysis to NO-based modulation of biological processes. However, the coordination geometry around the cobalt center is complex, the therapeutic window of NO is narrow, and controlled NO delivery is difficult. To better understand the complexation of cobalt with NO, we prepared four cobalt nitrato complexes and present a structure-property relationship for ultrasound-triggerable NO release. We hypothesized that modulation of the coordination geometry by ligand-modification would improve responsiveness to mechanical stimuli, like ultrasound. To enable eventual therapeutic testing, we here first demonstrate the in vitro tolerability of [Co(ethylenediamine)2(NO)(NO3)](NO3) in A431 epidermoid carcinoma cells and J774A.1 murine macrophages, and we subsequently show successful encapsulation of the complex in poly(butyl cyanoacrylate) microbubbles. These hybrid Co-NO-containing microbubbles may in the future aid in ultrasound imaging-guided treatment of NO-responsive vascular pathologies.

2.
J Biotechnol ; 363: 40-49, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36681096

ABSTRACT

Global interest for the minor cannabinoid cannabichromene (CBC) is growing steadily, as potential pharmaceutical applications continue to emerge. Due to low-yielding and unspecific extraction processes from its plant host Cannabis sativa, a biotechnological production is desirable. The complete heterologous biosynthesis of several other cannabinoids has recently been demonstrated as an accessible platform. However, the enzyme involved in the biosynthesis of CBC precursor cannabichromenic acid (CBCA) suffers from comparatively low catalytic efficiency, has not been crystallized, and remains poorly characterized. This study contributes to overcoming these challenges in three unique aspects. A deep­learning­assisted prediction of the CBCA synthase crystal structure using DeepMinds AlphaFold is performed and evaluated. The predicted CBCA synthase structure scored considerably higher in various quality assessments than the alternative template­based homology modeling approach. A robust and practical understanding of crucial structure-function relationships for CBCA synthase is provided and a new binding mode for the substrate uncovered. Rational design approaches and computational analyses to suggest CBCAS variants with facilitated activity are applied. Through subsequent screening the substrate conversion of those variants is compared to the native enzyme. The best variant presented in this study increases CBCA production from crude lysate 22-fold and is one of five positions where substitutions had a significantly favorable impact on product formation.


Subject(s)
Cannabinoids , Cannabis , Cannabinoids/metabolism , Biotechnology
3.
Sci Rep ; 11(1): 8457, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875729

ABSTRACT

Transcranial direct current stimulation (tDCS) is a promising tool to enhance cognitive performance. However, its effectiveness has not yet been unequivocally shown. Thus, here we tested whether coupling tDCS with a bout of aerobic exercise (AE) is more effective in modulating cognitive functions than tDCS or AE alone. One hundred twenty-two healthy participants were assigned to five randomized controlled crossover experiments. Two multimodal target experiments (EXP-4: anodal vs. sham tDCS during AE; EXP-5: cathodal vs. sham tDCS during AE) investigated whether anodal (a-tDCS) or cathodal tDCS (c-tDCS) applied during AE over the left dorsolateral prefrontal cortex (left DLPFC) affects executive functioning (inhibition ability). In three unimodal control experiments, the participants were either stimulated (EXP-1: anodal vs. sham tDCS, EXP-2: cathodal vs. sham tDCS) or did AE (EXP-3: AE vs. active control). Participants performed an Eriksen flanker task during ergometer cycling at moderate intensity (in EXP. 3-5). Only c-tDCS during AE had a significant adverse effect on the inhibition task, with decreased accuracy. This outcome provides preliminary evidence that c-tDCS during AE over the left DLPFC might effectively modulate inhibition performance compared to c-tDCS alone. However, more systematic research is needed in the future.


Subject(s)
Cognition/physiology , Executive Function/physiology , Exercise , Prefrontal Cortex/physiology , Transcranial Direct Current Stimulation/methods , Adult , Cross-Over Studies , Female , Healthy Volunteers , Humans , Male , Young Adult
4.
Dalton Trans ; 50(19): 6444-6462, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33908532

ABSTRACT

Copper nitrene complexes are highly reactive species and are known as intermediates in the copper catalyzed C-H amination. In this study, three novel copper tosyl nitrene complexes were synthesized at low temperatures, stabilized with heteroscorpionate ligands of the bis(pyrazolyl)methane family. The copper nitrenes were obtained by the reaction of a copper(i) acetonitrile complex with SPhINTs in dichloromethane. We show that the ligand design has a major influence on the catalytic activity and the thermal stability of the copper nitrene complex. Not only the choice of the third N donor, but also the substituent in the 5-position of the pyrazolyl moiety, have an impact on the stability. Furthermore, the novel copper nitrene complexes were used for catalytic aziridination of styrenes and C-H amination reactions of aromatic and aliphatic substrates under mild reaction conditions. Even challenging substrates like benzene and cyclohexane were aminated with good yields. The copper nitrene complexes were characterized using UV/Vis spectroscopy, low temperature Evans NMR spectroscopy, density functional theory, domain-based local pair natural orbital coupled cluster calculations (DLPNO-CCSD(T)) and cryo-UHR mass spectrometry.

5.
Front Aging Neurosci ; 12: 594810, 2020.
Article in English | MEDLINE | ID: mdl-33362531

ABSTRACT

Motor control is associated with suppression of oscillatory activity in alpha (8-12 Hz) and beta (12-30 Hz) ranges and elevation of oxygenated hemoglobin levels in motor-cortical areas. Aging leads to changes in oscillatory and hemodynamic brain activity and impairments in motor control. However, the relationship between age-related changes in motor control and brain activity is not yet fully understood. Therefore, this study aimed to investigate age-related and task-complexity-related changes in grip force control and the underlying oscillatory and hemodynamic activity. Sixteen younger [age (mean ± SD) = 25.4 ± 1.9, 20-30 years] and 16 older (age = 56.7 ± 4.7, 50-70 years) healthy men were asked to use a power grip to perform six trials each of easy and complex force tracking tasks (FTTs) with their right dominant hand in a randomized within-subject design. Grip force control was assessed using a sensor-based device. Brain activity in premotor and primary motor areas of both hemispheres was assessed by electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Older adults showed significantly higher inaccuracies and higher hemodynamic activity in both FTTs than did young adults. Correlations between grip force control owing to task complexity and beta activity were different in the contralateral premotor cortex (PMC) between younger and older adults. Collectively, these findings suggest that aging leads to impairment of grip force control and an increase in hemodynamic activity independent of task complexity. EEG beta oscillations may represent a task-specific neurophysiological marker for age-related decline in complex grip force control and its underlying compensation strategies. Further EEG-fNIRS studies are necessary to determine neurophysiological markers of dysfunctions underlying age-related motor disabilities for the improvement of individual diagnosis and therapeutic approaches.

6.
Appl Microbiol Biotechnol ; 104(22): 9551-9563, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33043390

ABSTRACT

Heterologous biosynthesis of tetrahydrocannabinolic acid (THCA) in yeast is a biotechnological process in Natural Product Biotechnology that was recently introduced. Based on heterologous genes from Cannabis sativa and Streptomyces spp. cloned into Saccharomyces cerevisiae, the heterologous biosynthesis was fully embedded as a proof of concept. Low titer and insufficient biocatalytic rate of most enzymes require systematic optimization of recombinant catalyst by protein engineering and consequent C-flux improvement of the yeast chassis for sufficient precursor (acetyl-CoA), energy (ATP), and NADH delivery. In this review basic principles of in silico analysis of anabolic pathways towards olivetolic acid (OA) and cannabigerolic acid (CBGA) are elucidated and discussed to identify metabolic bottlenecks. Based on own experimental results, yeasts are discussed as potential platform organisms to be introduced as potential cannabinoid biofactories. Especially feeding strategies and limitations in the committed mevalonate and olivetolic acid pathways are in focus of in silico and experimental studies to validate the scientific and commercial potential as a realistic alternative to the plant Cannabis sativa.Key points• First time critical review of the heterologous process for recombinant THCA/CBDA production and critical review of bottlenecks and limitations for a bioengineered technical process• Integrative approach of protein engineering, systems biotechnology, and biochemistry of yeast physiology and biosynthetic cannabinoid enzymes• Comparison of NphB and CsPT aromatic prenyltransferases as rate-limiting catalytic steps towards cannabinoids in yeast as platform organisms Graphical abstract.


Subject(s)
Bioengineering , Cannabinoids , Cannabis , Dronabinol , Saccharomyces cerevisiae/genetics
7.
Chem Commun (Camb) ; 56(42): 5601-5604, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32355940

ABSTRACT

Catalytically active copper bis(pyrazolyl)methane complexes have been anchored into pVCL-GMA microgels on specified positions within the microgel network. Functionalized microgels act as nanoreactors providing a tailored environment and stabilization for the copper complexes thus increasing the product yield. The oxidation of benzyl alcohols to their respective aldehydes was chosen as a test reaction to show the enhancement of catalytic activity due to the immobilization of the copper complex compared to the copper salt and the molecular copper complex.

8.
J Neuroeng Rehabil ; 16(1): 161, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882008

ABSTRACT

BACKGROUND: Gait disorders are major symptoms of neurological diseases affecting the quality of life. Interventions that restore walking and allow patients to maintain safe and independent mobility are essential. Robot-assisted gait training (RAGT) proved to be a promising treatment for restoring and improving the ability to walk. Due to heterogenuous study designs and fragmentary knowlegde about the neural correlates associated with RAGT and the relation to motor recovery, guidelines for an individually optimized therapy can hardly be derived. To optimize robotic rehabilitation, it is crucial to understand how robotic assistance affect locomotor control and its underlying brain activity. Thus, this study aimed to investigate the effects of robotic assistance (RA) during treadmill walking (TW) on cortical activity and the relationship between RA-related changes of cortical activity and biomechanical gait characteristics. METHODS: Twelve healthy, right-handed volunteers (9 females; M = 25 ± 4 years) performed unassisted walking (UAW) and robot-assisted walking (RAW) trials on a treadmill, at 2.8 km/h, in a randomized, within-subject design. Ground reaction forces (GRFs) provided information regarding the individual gait patterns, while brain activity was examined by measuring cerebral hemodynamic changes in brain regions associated with the cortical locomotor network, including the sensorimotor cortex (SMC), premotor cortex (PMC) and supplementary motor area (SMA), using functional near-infrared spectroscopy (fNIRS). RESULTS: A statistically significant increase in brain activity was observed in the SMC compared with the PMC and SMA (p < 0.05), and a classical double bump in the vertical GRF was observed during both UAW and RAW throughout the stance phase. However, intraindividual gait variability increased significantly with RA and was correlated with increased brain activity in the SMC (p = 0.05; r = 0.57). CONCLUSIONS: On the one hand, robotic guidance could generate sensory feedback that promotes active participation, leading to increased gait variability and somatosensory brain activity. On the other hand, changes in brain activity and biomechanical gait characteristics may also be due to the sensory feedback of the robot, which disrupts the cortical network of automated walking in healthy individuals. More comprehensive neurophysiological studies both in laboratory and in clinical settings are necessary to investigate the entire brain network associated with RAW.


Subject(s)
Brain/physiology , Gait/physiology , Robotics , Self-Help Devices , Adult , Brain Mapping , Exercise Therapy/instrumentation , Exercise Therapy/methods , Female , Gait Disorders, Neurologic/rehabilitation , Humans , Male , Robotics/methods , Walking/physiology
9.
Angew Chem Int Ed Engl ; 57(29): 9154-9159, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29734490

ABSTRACT

Heteroscorpionate ligands of the bis(pyrazolyl)methane family have been applied in the stabilisation of terminal copper tosyl nitrenes. These species are highly active intermediates in the copper-catalysed direct C-H amination and nitrene transfer. Novel perfluoroalkyl-pyrazolyl- and pyridinyl-containing ligands were synthesized to coordinate to a reactive copper nitrene centre. Four distinct copper tosyl nitrenes were prepared at low temperatures by the reaction with SO2 tBuPhINTs and copper(I) acetonitrile complexes. Their stoichiometric reactivity has been elucidated regarding the imination of phosphines and the aziridination of styrenes. The formation and thermal decay of the copper nitrenes were investigated by UV/Vis spectroscopy of the highly coloured species. Additionally, the compounds were studied by cryo-UHR-ESI mass spectrometry and DFT calculations. In addition, a mild catalytic procedure has been developed where the copper nitrene precursors enable the C-H amination of cyclohexane and toluene and the aziridination of styrenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...