Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5661, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969680

ABSTRACT

A major challenge in Parkinson's disease is the variability in symptoms and rates of progression, underpinned by heterogeneity of pathological processes. Biomarkers are urgently needed for accurate diagnosis, patient stratification, monitoring disease progression and precise treatment. These were previously lacking, but recently, novel imaging and fluid biomarkers have been developed. Here, we consider new imaging approaches showing sensitivity to brain tissue composition, and examine novel fluid biomarkers showing specificity for pathological processes, including seed amplification assays and extracellular vesicles. We reflect on these biomarkers in the context of new biological staging systems, and on emerging techniques currently in development.


Subject(s)
Biomarkers , Brain , Extracellular Vesicles , Neuroimaging , Parkinson Disease , Parkinson Disease/metabolism , Parkinson Disease/diagnostic imaging , Parkinson Disease/diagnosis , Humans , Biomarkers/metabolism , Neuroimaging/methods , Extracellular Vesicles/metabolism , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Disease Progression
2.
Mov Disord ; 39(3): 546-559, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38173297

ABSTRACT

BACKGROUND: Dementia is common in Parkinson's disease (PD), but there is wide variation in its timing. A critical gap in PD research is the lack of quantifiable markers of progression, and methods to identify early stages of dementia. Atrophy-based magnetic resonance imaging (MRI) has limited sensitivity in detecting or tracking changes relating to PD dementia, but quantitative susceptibility mapping (QSM), sensitive to brain tissue iron, shows potential for these purposes. OBJECTIVE: The objective of the paper is to study, for the first time, the longitudinal relationship between cognition and QSM in PD in detail. METHODS: We present a longitudinal study of clinical severity in PD using QSM, including 59 PD patients (without dementia at study onset), and 22 controls over 3 years. RESULTS: In PD, increased baseline susceptibility in the right temporal cortex, nucleus basalis of Meynert, and putamen was associated with greater cognitive severity after 3 years; and increased baseline susceptibility in basal ganglia, substantia nigra, red nucleus, insular cortex, and dentate nucleus was associated with greater motor severity after 3 years. Increased follow-up susceptibility in these regions was associated with increased follow-up cognitive and motor severity, with further involvement of hippocampus relating to cognitive severity. However, there were no consistent increases in susceptibility over 3 years. CONCLUSIONS: Our study suggests that QSM may predict changes in cognitive severity many months prior to overt cognitive involvement in PD. However, we did not find robust longitudinal changes in QSM over the course of the study. Additional tissue metrics may be required together with QSM for it to monitor progression in clinical practice and therapeutic trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Longitudinal Studies , Basal Ganglia/pathology , Substantia Nigra/pathology , Magnetic Resonance Imaging/methods
3.
Brain Commun ; 5(1): fcac329, 2023.
Article in English | MEDLINE | ID: mdl-36601626

ABSTRACT

Visual hallucinations are common in Parkinson's disease and are associated with a poorer quality of life and a higher risk of dementia. An important and influential model that is widely accepted as an explanation for the mechanism of visual hallucinations in Parkinson's disease and other Lewy body diseases is that these arise due to aberrant hierarchical processing, with impaired bottom-up integration of sensory information and overweighting of top-down perceptual priors within the visual system. This hypothesis has been driven by behavioural data and supported indirectly by observations derived from regional activation and correlational measures using neuroimaging. However, until now, there was no evidence from neuroimaging for differences in causal influences between brain regions measured in patients with Parkinson's hallucinations. This is in part because previous resting-state studies focused on functional connectivity, which is inherently undirected in nature and cannot test hypotheses about the directionality of connectivity. Spectral dynamic causal modelling is a Bayesian framework that allows the inference of effective connectivity-defined as the directed (causal) influence that one region exerts on another region-from resting-state functional MRI data. In the current study, we utilize spectral dynamic causal modelling to estimate effective connectivity within the resting-state visual network in our cohort of 15 Parkinson's disease visual hallucinators and 75 Parkinson's disease non-visual hallucinators. We find that visual hallucinators display decreased bottom-up effective connectivity from the lateral geniculate nucleus to primary visual cortex and increased top-down effective connectivity from the left prefrontal cortex to primary visual cortex and the medial thalamus, as compared with non-visual hallucinators. Importantly, we find that the pattern of effective connectivity is predictive of the presence of visual hallucinations and associated with their severity within the hallucinating group. This is the first study to provide evidence, using resting-state effective connectivity, to support a model of aberrant hierarchical predictive processing as the mechanism for visual hallucinations in Parkinson's disease.

4.
Brain ; 144(6): 1787-1798, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33704443

ABSTRACT

The mechanisms responsible for the selective vulnerability of specific neuronal populations in Parkinson's disease are poorly understood. Oxidative stress secondary to brain iron accumulation is one postulated mechanism. We measured iron deposition in 180 cortical regions of 96 patients with Parkinson's disease and 35 control subjects using quantitative susceptibility mapping. We estimated the expression of 15 745 genes in the same regions using transcriptomic data from the Allen Human Brain Atlas. Using partial least squares regression, we then identified the profile of gene transcription in the healthy brain that underlies increased cortical iron in patients with Parkinson's disease relative to controls. Applying gene ontological tools, we investigated the biological processes and cell types associated with this transcriptomic profile and identified the sets of genes with spatial expression profiles in control brains that correlated significantly with the spatial pattern of cortical iron deposition in Parkinson's disease. Gene ontological analyses revealed that these genes were enriched for biological processes relating to heavy metal detoxification, synaptic function and nervous system development and were predominantly expressed in astrocytes and glutamatergic neurons. Furthermore, we demonstrated that the genes differentially expressed in Parkinson's disease are associated with the pattern of cortical expression identified in this study. Our findings provide mechanistic insights into regional selective vulnerabilities in Parkinson's disease, particularly the processes involving iron accumulation.


Subject(s)
Brain/metabolism , Brain/pathology , Iron/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Aged , Aged, 80 and over , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neuroimaging/methods , Oxidative Stress/physiology , Transcriptome
5.
Brain ; 144(3): 975-988, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33543247

ABSTRACT

Dementia is one of the most debilitating aspects of Parkinson's disease. There are no validated biomarkers that can track Parkinson's disease progression, nor accurately identify patients who will develop dementia and when. Understanding the sequence of observable changes in Parkinson's disease in people at elevated risk for developing dementia could provide an integrated biomarker for identifying and managing individuals who will develop Parkinson's dementia. We aimed to estimate the sequence of clinical and neurodegeneration events, and variability in this sequence, using data-driven statistical modelling in two separate Parkinson's cohorts, focusing on patients at elevated risk for dementia due to their age at symptom onset. We updated a novel version of an event-based model that has only recently been extended to cope naturally with clinical data, enabling its application in Parkinson's disease for the first time. The observational cohorts included healthy control subjects and patients with Parkinson's disease, of whom those diagnosed at age 65 or older were classified as having high risk of dementia. The model estimates that Parkinson's progression in patients at elevated risk for dementia starts with classic prodromal features of Parkinson's disease (olfaction, sleep), followed by early deficits in visual cognition and increased brain iron content, followed later by a less certain ordering of neurodegeneration in the substantia nigra and cortex, neuropsychological cognitive deficits, retinal thinning in dopamine layers, and further deficits in visual cognition. Importantly, we also characterize variation in the sequence. We found consistent, cross-validated results within cohorts, and agreement between cohorts on the subset of features available in both cohorts. Our sequencing results add powerful support to the increasing body of evidence suggesting that visual processing specifically is affected early in patients with Parkinson's disease at elevated risk of dementia. This opens a route to earlier and more precise detection, as well as a more detailed understanding of the pathological mechanisms underpinning Parkinson's dementia.


Subject(s)
Dementia/etiology , Dementia/physiopathology , Models, Neurological , Parkinson Disease/physiopathology , Age of Onset , Aged , Disease Progression , Female , Humans , Male , Middle Aged , Nerve Degeneration/etiology , Nerve Degeneration/physiopathology , Parkinson Disease/complications
6.
Int J Psychophysiol ; 123: 64-73, 2018 01.
Article in English | MEDLINE | ID: mdl-29158118

ABSTRACT

The dementias are a group of progressive symptoms that have multiple causes, usually caused by disease or injury of the brain, affecting higher brain functions such as language, perception, memory, reasoning and mood; they can also be associated with changes in personality. Arts interventions and interaction with the arts can create meaningful, positive experiences for people with a dementia, as well as improve quality of life. Qualitative research in particular, has been able to describe the emotional responses the arts can produce, but quantifiable changes have not been well documented. Physiological measurements such as stress hormone levels and galvanic skin response show promise in being able to quantify such responses. When taken together, these can give a picture of the kinds of physiological outcomes that are associated with positive affect and improvements in mental wellbeing in the context of arts interventions. This review provides a critical overview of the studies which measure some form of physiological outcome in response to the arts or an arts intervention in people with dementia, and indicates how future research in this area can help to broaden our understanding of the effects of the arts in dementia research and care.


Subject(s)
Art Therapy , Dementia/physiopathology , Dementia/rehabilitation , Galvanic Skin Response/physiology , Heart Rate/physiology , Hormones/metabolism , Humans
7.
Proc Natl Acad Sci U S A ; 107(35): 15523-8, 2010 Aug 31.
Article in English | MEDLINE | ID: mdl-20713727

ABSTRACT

Retinal degenerative diseases, such as retinitis pigmentosa and Leber congenital amaurosis, are a leading cause of untreatable blindness with substantive impact on the quality of life of affected individuals and their families. Mouse mutants with retinal dystrophies have provided a valuable resource to discover human disease genes and helped uncover pathways critical for photoreceptor function. Here we show that the rd11 mouse mutant and its allelic strain, B6-JR2845, exhibit rapid photoreceptor dysfunction, followed by degeneration of both rods and cones. Using linkage analysis, we mapped the rd11 locus to mouse chromosome 13. We then identified a one-nucleotide insertion (c.420-421insG) in exon 3 of the Lpcat1 gene. Subsequent screening of this gene in the B6-JR2845 strain revealed a seven-nucleotide deletion (c.14-20delGCCGCGG) in exon 1. Both sequence changes are predicted to result in a frame-shift, leading to premature truncation of the lysophosphatidylcholine acyltransferase-1 (LPCAT1) protein. LPCAT1 (also called AYTL2) is a phospholipid biosynthesis/remodeling enzyme that facilitates the conversion of palmitoyl-lysophosphatidylcholine to dipalmitoylphosphatidylcholine (DPPC). The analysis of retinal lipids from rd11 and B6-JR2845 mice showed substantially reduced DPPC levels compared with C57BL/6J control mice, suggesting a causal link to photoreceptor dysfunction. A follow-up screening of LPCAT1 in retinitis pigmentosa and Leber congenital amaurosis patients did not reveal any obvious disease-causing mutations. Previously, LPCAT1 has been suggested to be critical for the production of lung surfactant phospholipids and biosynthesis of platelet-activating factor in noninflammatory remodeling pathway. Our studies add another dimension to an essential role for LPCAT1 in retinal photoreceptor homeostasis.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase/genetics , Photoreceptor Cells, Vertebrate/metabolism , Retinal Degeneration/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Animals , Base Sequence , Blotting, Northern , Chromatography, High Pressure Liquid , Chromosome Mapping , DNA Mutational Analysis , Humans , Immunoblotting , Leber Congenital Amaurosis/genetics , Lipids/analysis , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Inbred Strains , Mice, Mutant Strains , Microscopy, Electron, Transmission , Phosphatidylcholines/analysis , Photoreceptor Cells, Vertebrate/chemistry , Photoreceptor Cells, Vertebrate/ultrastructure , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinitis Pigmentosa/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...