Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.106
Filter
2.
Physiol Rep ; 12(12): e16012, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38959068

ABSTRACT

Pulmonary fibrosis is an interstitial scarring disease of the lung characterized by poor prognosis and limited treatment options. Tissue transglutaminase 2 (TG2) is believed to promote lung fibrosis by crosslinking extracellular matrix components and activating latent TGFß. This study assessed physiologic pulmonary function and metabolic alterations in the mouse bleomycin model with TG2 genetic deletion. TG2-deficient mice demonstrated attenuated the fibrosis and preservation of lung function, with significant reduction in elastance and increases in compliance and inspiratory capacity compared to control mice treated with bleomycin. Bleomycin induced metabolic changes in the mouse lung that were consistent with increased aerobic glycolysis, including increased expression of lactate dehydrogenase A and increased production of lactate, as well as increased glutamine, glutamate, and aspartate. TG2-deficient mice treated with bleomycin exhibited similar metabolic changes but with reduced magnitude. Our results demonstrate that TG2 is required for a typical fibrosis response to injury. In the absence of TG2, the fibrotic response is biochemically similar to wild-type, but lesions are smaller and lung function is preserved. We also show for the first time that profibrotic pathways of tissue stiffening and metabolic reprogramming are interconnected, and that metabolic disruptions in fibrosis go beyond glycolysis.


Subject(s)
Bleomycin , Lung , Mice, Knockout , Protein Glutamine gamma Glutamyltransferase 2 , Pulmonary Fibrosis , Transglutaminases , Animals , Bleomycin/toxicity , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Transglutaminases/metabolism , Transglutaminases/genetics , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Mice , Lung/pathology , Lung/metabolism , Lung/drug effects , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Mice, Inbred C57BL , Glycolysis , Male
3.
Commun Biol ; 7(1): 879, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025930

ABSTRACT

In clinical situations, peripheral blood accessible CD3+CD4+CXCR5+ T-follicular helper (TFH) cells may have to serve as a surrogate indicator for dysregulated germinal center responses in tissues. To determine the heterogeneity of TFH cells in peripheral blood versus tonsils, CD3+CD4+CD45RA-CXCR5+ cells of both origins were sorted. Transcriptomes, TCR repertoires and cell-surface protein expression were analysed by single-cell RNA sequencing, flow cytometry and immunohistochemistry. Reassuringly, all blood-circulating CD3+CD4+CXCR5+ T-cell subpopulations also appear in tonsils, there with some supplementary TFH characteristics, while peripheral blood-derived TFH cells display markers of proliferation and migration. Three further subsets of TFH cells, however, with bona fide T-follicular gene expression patterns, are exclusively found in tonsils. One additional, distinct and oligoclonal CD4+CXCR5+ subpopulation presents pronounced cytotoxic properties. Those 'killer TFH (TFK) cells' can be discovered in peripheral blood as well as among tonsillar cells but are located predominantly outside of germinal centers. They appear terminally differentiated and can be distinguished from all other TFH subsets by expression of NKG7 (TIA-1), granzymes, perforin, CCL5, CCR5, EOMES, CRTAM and CX3CR1. All in all, this study provides data for detailed CD4+CXCR5+ T-cell assessment of clinically available blood samples and extrapolation possibilities to their tonsil counterparts.


Subject(s)
Palatine Tonsil , Receptors, CXCR5 , Humans , Palatine Tonsil/immunology , Palatine Tonsil/metabolism , Palatine Tonsil/cytology , Receptors, CXCR5/metabolism , Receptors, CXCR5/genetics , Phenotype , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Male , Female , Adult
4.
ESC Heart Fail ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984947

ABSTRACT

AIMS: One third of patients do not improve after cardiac resynchronization therapy (CRT). Septal flash (SF) and apical rocking (ApRock) are deformation patterns observed on echocardiography in most patients eligible for CRT. These markers of mechanical dyssynchrony have been associated to improved outcome after CRT in observational studies and may be useful to better select patients. The aim of this trial is to investigate whether the current guideline criteria for selecting patients for CRT should be modified and include SF and ApRock to improve therapy success rate, reduce excessive costs and prevent exposure to device-related complications in patients who would not benefit from CRT. METHODS: The AMEND-CRT trial is a multicentre, randomized, parallel-group, double-blind, sham-controlled trial with a non-inferiority design. The trial will include 578 patients scheduled for CRT according to the 2021 ESC guidelines who satisfy all inclusion criteria. The randomization is performed 1:1 to an active control arm ('guideline arm') or an experimental arm ('echo arm'). All participants receive a device, but in the echo arm, CRT is activated only when SF or ApRock or both are present. The outcome of both arms will be compared after 1 year. The primary outcome measures are the average change in left ventricular end-systolic volume and patient outcome assessed using a modified Packer Clinical Composite Score. CONCLUSIONS: The findings of this trial will redefine the role of echocardiography in CRT and potentially determine which patients with heart failure and a prolonged QRS duration should receive CRT, especially in patients who currently have a class IIa or class IIb recommendation.

5.
Magn Reson Med Sci ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39010211

ABSTRACT

PURPOSE: Gadolinium-based contrast media (GBCM) may affect apparent diffusion coefficient measurements on diffusion-weighted imaging. We aimed at investigating the effect of GBCM and inter-reader variation on intravoxel incoherent motion (IVIM) parameters in breast lesions. METHODS: A total of 89 patients referred to 3T breast MRI with at least one histologically verified lesion were included. IVIM data were acquired using a single-shot echo planar imaging sequence before and after GBCM administration. D (true diffusion coefficient), D* (pseudo-diffusion coefficient) and f (perfusion fraction) were calculated and measured by two readers (R1, R2). Inter-reader and intra-reader agreements were assessed by intraclass correlation coefficients (ICCs) and Bland-Altman plots. RESULTS: D was comparable before and after GBCM administration and between readers. D* and f decreased after GBCM administration and showed a lower agreement between readers. Intra-reader agreement before and after GBCM administration was almost perfect for D for both R1 and R2 (ICC 0.955 and 0.887). The intra-reader agreement was substantial to moderate for D* (ICC R1 0.708, R2 0.583) and moderate for f (ICC R1 0.529 and R2 0.425). Inter-reader agreement before GBCM administration was almost perfect for D (ICC 0.905), substantial for D* (ICC 0.733), and moderate for f (ICC 0.404); after contrast media administration, it was almost perfect for D (ICC 0.876) and substantial for D* (ICC 0.654) and f (ICC 0.606). Bland-Altman plots revealed no significant bias. CONCLUSION: Administration of GBCM seems to have a stronger effect on D* and f values than on D values. This should be considered when applying IVIM in clinical practice.

6.
J Parkinsons Dis ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39031383

ABSTRACT

The increasing prevalence of people with Parkinson's disease (PD) necessitates a high priority for finding interventions to delay or even prevent the onset of PD. There is converging evidence that exercise may exert disease-modifying effects in people with clinically manifest PD, but whether exercise also has a preventive effect or is able to modify the progression of the pathology in the prodromal phase of PD is unclear. Here we provide some considerations on the design of trials that aim to prevent PD through exercise. First, we discuss the who could benefit from exercise, and potential exercise-related risks. Second, we discuss what specific components of exercise mediate the putative disease-modifying effects. Third, we address how methodological challenges such as blinding, adherence and remote monitoring could be handled and how we can measure the efficacy of exercise as modifier of the course of prodromal PD. We hope that these considerations help in designing exercise prevention trials for persons at risk of developing PD.

7.
ACS Appl Mater Interfaces ; 16(29): 38478-38489, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39007528

ABSTRACT

Conjugated polymer nanoparticles (CPNs or Pdots) have become increasingly popular fluorophores for multimodal applications that combine imaging with phototherapeutic effects. Reports of CPNs in photodynamic therapy applications typically focus on their ability to generate singlet oxygen. Alternatively, CPN excited states can interact with oxygen to form superoxide radical anion and a CPN-based hole polaron, both of which can have deleterious effects on fluorescence properties. Here, we demonstrate that CPNs prepared from the common conjugated polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT, also known as F8BT) generate superoxide upon irradiation. We use the same CPNs to detect superoxide by doping them with a superoxide-responsive hydrocyanine dye developed by Murthy and co-workers. Superoxide induces off-to-on fluorescence switching by converting quenching hydrocyanine dyes to fluorescent cyanine dyes that act as fluorescence resonance energy transfer (FRET) acceptors for PFBT chromophores. Amplified FRET from the multichromophoric CPNs yields fluorescence signal intensities that are nearly 50 times greater than when the dye is excited directly or over 100 times greater when signal readout is from the CPN channel. The dye loading level governs the maximum amount of superoxide that induces a change in fluorescence properties and also influences the rate of superoxide generation by furnishing competitive excited state deactivation pathways. These results suggest that CPNs can be used to deliver superoxide in applications in which it is desirable and provide a caution for fluorescence-based CPN applications in which superoxide can damage fluorophores.

8.
JAMA Psychiatry ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985482

ABSTRACT

Importance: While abundant work has examined patient-level differences in antidepressant treatment outcomes, little is known about the extent of clinician-level differences. Understanding these differences may be important in the development of risk models, precision treatment strategies, and more efficient systems of care. Objective: To characterize differences between outpatient clinicians in treatment selection and outcomes for their patients diagnosed with major depressive disorder across academic medical centers, community hospitals, and affiliated clinics. Design, Setting, and Participants: This was a longitudinal cohort study using data derived from electronic health records at 2 large academic medical centers and 6 community hospitals, and their affiliated outpatient networks, in eastern Massachusetts. Participants were deidentified clinicians who billed at least 10 International Classification of Diseases, Ninth Revision (ICD-9) or Tenth Revision (ICD-10) diagnoses of major depressive disorder per year between 2008 and 2022. Data analysis occurred between September 2023 and January 2024. Main Outcomes and Measures: Heterogeneity of prescribing, defined as the number of distinct antidepressants accounting for 75% of prescriptions by a given clinician; proportion of patients who did not return for follow-up after an index prescription; and proportion of patients receiving stable, ongoing antidepressant treatment. Results: Among 11 934 clinicians treating major depressive disorder, unsupervised learning identified 10 distinct clusters on the basis of ICD codes, corresponding to outpatient psychiatry as well as oncology, obstetrics, and primary care. Between these clusters, substantial variability was identified in the proportion of selective serotonin reuptake inhibitors, selective norepinephrine reuptake inhibitors, and tricyclic antidepressants prescribed, as well as in the number of distinct antidepressants prescribed. Variability was also detected between clinician clusters in loss to follow-up and achievement of stable treatment, with the former ranging from 27% to 69% and the latter from 22% to 42%. Clinician clusters were significantly associated with treatment outcomes. Conclusions and Relevance: Groups of clinicians treating individuals diagnosed with major depressive disorder exhibit marked differences in prescribing patterns as well as longitudinal patient outcomes defined by electronic health records. Incorporating these group identifiers yielded similar prediction to more complex models incorporating individual codes, suggesting the importance of considering treatment context in efforts at risk stratification.

9.
Andrology ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988181

ABSTRACT

BACKGROUND: The epididymis is important for sperm maturation and without its proper development, male infertility will result. Biomechanical properties of tissues/organs play key roles during their morphogenesis, including the Wolffian duct. It is hypothesized that structural/bulk stiffness of the capsule and mesenchyme/extracellular matrix that surround the duct is a major biomechanical property that regulates Wolffian duct morphogenesis. These data will provide key information as to the mechanisms that regulate the development of this important organ. OBJECTIVES: To measure the structural/bulk stiffness in Pascals (force/area) of the capsule and the capsule and mesenchyme together that surrounds the Wolffian duct during the development. To examine the relative membrane tension of mesenchymal cells during the Wolffian duct development. Since Ptk7 was previously shown to regulate ECM integrity and Wolffian duct elongation and coiling, the hypothesis that Ptk7 regulates structural/bulk stiffness and mesenchymal cell membrane tension was tested. MATERIALS AND METHODS: Atomic force microscopy and a microsquisher compression apparatus were used to measure the structural stiffness. Biomechanical properties within the membranes of cells within the capsule and mesenchyme were examined using a membrane-tension fluorescent probe. RESULTS AND DISCUSSION: The structural stiffness (Pascals) of the capsule and underlying mesenchyme was relatively constant during development, with a significant increase in the capsule at the later stages. However, this increase may reflect the ECM and associated mesenchyme being close to the capsule because the coiling of the duct pushed or compressed them into that space. Keeping the capsule and mesenchyme/ECM at constant stiffness would ensure that the duct will continue to coil under similar biomechanical forces throughout the development. Cells within the capsule and mesenchyme at different Wolffian duct regions during the development had varying degrees of membrane lipid tension. It is hypothesized that the dynamic changes ensure the duct is kept at a constant stiffness regardless of any external forces. Loss of Ptk7 resulted in an increase in stiffness at E18.5, which was presumable due to the loss of integrity of the ECM within the mesenchyme. CONCLUSION: Biomechanical properties of the capsule and the mesenchyme/extracellular matrix that surround the Wolffian duct play an important role toward Wolffian duct morphogenesis, thereby allowing for the proper development of the epididymis and subsequent male fertility.

10.
J Am Chem Soc ; 146(28): 19088-19100, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38946086

ABSTRACT

Antibody-drug conjugates (ADCs) for the treatment of cancer aim to achieve selective delivery of a cytotoxic payload to tumor cells while sparing normal tissue. In vivo, multiple tumor-dependent and -independent processes act on ADCs and their released payloads to impact tumor-versus-normal delivery, often resulting in a poor therapeutic window. An ADC with a labeled payload would make synchronous correlations between distribution and tissue-specific pharmacological effects possible, empowering preclinical and clinical efforts to improve tumor-selective delivery; however, few methods to label small molecules without destroying their pharmacological activity exist. Herein, we present a bioorthogonal switch approach that allows a radiolabel attached to an ADC payload to be removed tracelessly at will. We exemplify this approach with a potent DNA-damaging agent, the pyrrolobenzodiazepine (PBD) dimer, delivered as an antibody conjugate targeted to lung tumor cells. The radiometal chelating group, DOTA, was attached via a novel trans-cyclooctene (TCO)-caged self-immolative para-aminobenzyl (PAB) linker to the PBD, stably attenuating payload activity and allowing tracking of biodistribution in tumor-bearing mice via SPECT-CT imaging (live) or gamma counting (post-mortem). Following TCO-PAB-DOTA reaction with tetrazines optimized for extra- and intracellular reactivity, the label was removed to reveal the unmodified PBD dimer capable of inducing potent tumor cell killing in vitro and in mouse xenografts. The switchable antibody radio-drug conjugate (ArDC) we describe integrates, but decouples, the two functions of a theranostic given that it can serve as a diagnostic for payload delivery in the labeled state, but can be switched on demand to a therapeutic agent (an ADC).


Subject(s)
Immunoconjugates , Tomography, Emission-Computed, Single-Photon , Immunoconjugates/chemistry , Humans , Animals , Mice , Benzodiazepines/chemistry , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Pyrroles/chemistry
11.
J Neurosci ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951039

ABSTRACT

The release of neurotransmitters at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Amongst those dedicated molecules, the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain proteins that bind SNARE complexes, conferring both inhibitory and stimulatory functions. Using systematic mutagenesis and comparing reconstituted in vitro membrane fusion assays with electrophysiology in cultured neurons from mice of either sex, we deciphered the function of the N-terminus of complexin II (Cpx). The N-terminus (amino acid 1 - 27) starts with a region enriched in hydrophobic amino acids (1-12), which binds lipids. Mutants maintaining this hydrophobic character retained the stimulatory function of Cpx, whereas exchanges introducing charged residues perturbed both spontaneous and evoked exocytosis. Mutants in the more distal region of the N-terminal domain (amino acid 11-18) showed a spectrum of effects. On one hand, mutation of residue A12 increased spontaneous release without affecting evoked release. On the other hand, replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release, but also impaired evoked release. Most surprising, this substitution reduced the size of the readily releasable pool, a novel function for Cpx at mammalian synapses. Thus, the exact amino acid composition of the Cpx N-terminus fine tunes the degree of spontaneous and evoked neurotransmitter release.Significance Statement We describe in this work the importance of the N-terminal domain of the small regulatory cytosolic protein complexin in spontaneous and evoked glutamatergic neurotransmitter release at hippocampal mouse neurons. We use biochemical assays to screen for amino acids of interest in the complexin N-terminus and test these residues for functional relevance in spontaneous and Ca2+-triggered synaptic vesicle exocytosis using electrophysiology assays and site-directed mutagenesis. In addition to identifying crucial residues for clamping spontaneous release and promoting Ca2+-evoked transmission, we identify a single amino acid at position D15 which determines synaptic vesicle priming, a function that was never before attributed to complexin at vertebrate synapses.

12.
Nat Commun ; 15(1): 5588, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961092

ABSTRACT

Dynamic failure in the laboratory is commonly preceded by many foreshocks which accompany premonitory aseismic slip. Aseismic slip is also thought to govern earthquake nucleation in nature, yet, foreshocks are rare. Here, we examine how heterogeneity due to different roughness, damage and pore pressures affects premonitory slip and acoustic emission characteristics. High fluid pressures increase stiffness and reduce heterogeneity which promotes more rapid slip acceleration and shorter precursory periods, similar to the effect of low geometric heterogeneity on smooth faults. The associated acoustic emission activity in low-heterogeneity samples becomes increasingly dominated by earthquake-like double-couple focal mechanisms. The similarity of fluid pressure increase and roughness reduction suggests that increased stress and geometric homogeneity may substantially shorten the duration of foreshock activity. Gradual fault activation and extended foreshock activity is more likely observable on immature faults at shallow depth.

13.
Alzheimers Dement ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946675

ABSTRACT

INTRODUCTION: We conducted admixture mapping and fine-mapping analyses to identify ancestry-of-origin loci influencing cognitive abilities. METHODS: We estimated the association of local ancestry intervals across the genome with five neurocognitive measures in 7140 diverse Hispanic and Latino adults (mean age 55 years). We prioritized genetic variants in associated loci and tested them for replication in four independent cohorts. RESULTS: We identified nine local ancestry-associated regions for the five neurocognitive measures. There was strong biological support for the observed associations to cognitive function at all loci and there was statistical evidence of independent replication at 4q12, 9p22.1, and 13q12.13. DISCUSSION: Our study identified multiple novel loci harboring genes implicated in cognitive functioning and dementia, and uncovered ancestry-relevant genetic variants. It adds to our understanding of the genetic architecture of cognitive function in Hispanic and Latino adults and demonstrates the power of admixture mapping to discover unique haplotypes influencing cognitive function, complementing genome-wide association studies. HIGHLIGHTS: We identified nine ancestry-of-origin chromosomal regions associated with five neurocognitive traits. In each associated region, we identified single nucleotide polymorphisms (SNPs) that explained, at least in part, the admixture signal and were tested for replication in independent samples of Black, non-Hispanic White, and Hispanic/Latino adults with the same or similar neurocognitive tests. Statistical evidence of independent replication of the prioritized SNPs was observed for three of the nine associations, at chr4q12, chr9p22.1, and chr13q12.13. At all loci, there was strong biological support for the observed associations to cognitive function and dementia, prioritizing genes such as KIT, implicated in autophagic clearance of neurotoxic proteins and on mast cell and microglial-mediated inflammation; SLC24A2, implicated in synaptic plasticity associated with learning and memory; and MTMR6, implicated in phosphoinositide lipids metabolism.

14.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948755

ABSTRACT

Huntington's disease (HD), due to expansion of a CAG repeat in HTT , is representative of a growing number of disorders involving somatically unstable short tandem repeats. We find that overlapping and distinct genetic modifiers of clinical landmarks and somatic expansion in blood DNA reveal an underlying complexity and cell-type specificity to the mismatch repair-related processes that influence disease timing. Differential capture of non-DNA-repair gene modifiers by multiple measures of cognitive and motor dysfunction argues additionally for cell-type specificity of pathogenic processes. Beyond trans modifiers, differential effects are also illustrated at HTT by a 5'-UTR variant that promotes somatic expansion in blood without influencing clinical HD, while, even after correcting for uninterrupted CAG length, a synonymous sequence change at the end of the CAG repeat dramatically hastens onset of motor signs without increasing somatic expansion. Our findings are directly relevant to therapeutic suppression of somatic expansion in HD and related disorders and provide a route to define the individual neuronal cell types that contribute to different HD clinical phenotypes.

15.
Inn Med (Heidelb) ; 65(8): 787-797, 2024 Aug.
Article in German | MEDLINE | ID: mdl-38977442

ABSTRACT

Genetic arrhythmia disorders are rare diseases; however, they are a common cause of sudden cardiac death in children, adolescents, and young adults. In principle, a distinction can be made between channelopathies and cardiomyopathies in the context of genetic diseases. This paper focuses on the channelopathies long and short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). Early diagnosis of these diseases is essential, as drug therapy, behavioral measures, and if necessary, implantation of a cardioverter defibrillator can significantly improve the prognosis and quality of life of patients. This paper highlights the pathophysiological and genetic basis of these channelopathies, describes their clinical manifestations, and comments on the principles of diagnosis, risk stratification and therapy.


Subject(s)
Arrhythmias, Cardiac , Brugada Syndrome , Channelopathies , Humans , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/therapy , Arrhythmias, Cardiac/physiopathology , Channelopathies/genetics , Channelopathies/diagnosis , Channelopathies/therapy , Brugada Syndrome/genetics , Brugada Syndrome/diagnosis , Brugada Syndrome/physiopathology , Brugada Syndrome/therapy , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/therapy , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/physiopathology , Adolescent , Child , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Long QT Syndrome/therapy , Long QT Syndrome/physiopathology , Death, Sudden, Cardiac/prevention & control , Death, Sudden, Cardiac/etiology , Adult , Defibrillators, Implantable , Electrocardiography
16.
Front Mol Biosci ; 11: 1393240, 2024.
Article in English | MEDLINE | ID: mdl-39040605

ABSTRACT

Background: COVID-19 disease is characterized by a spectrum of disease phases (mild, moderate, and severe). Each disease phase is marked by changes in omics profiles with corresponding changes in the expression of features (biosignatures). However, integrative analysis of multiple omics data from different experiments across studies to investigate biosignatures at various disease phases is limited. Exploring an integrative multi-omics profile analysis through a network approach could be used to determine biosignatures associated with specific disease phases and enable the examination of the relationships between the biosignatures. Aim: To identify and characterize biosignatures underlying various COVID-19 disease phases in an integrative multi-omics data analysis. Method: We leveraged a multi-omics network-based approach to integrate transcriptomics, metabolomics, proteomics, and lipidomics data. The World Health Organization Ordinal Scale WHO Ordinal Scale was used as a disease severity reference to harmonize COVID-19 patient metadata across two studies with independent data. A unified COVID-19 knowledge graph was constructed by assembling a disease-specific interactome from the literature and databases. Disease-state specific omics-graphs were constructed by integrating multi-omics data with the unified COVID-19 knowledge graph. We expanded on the network layers of multiXrank, a random walk with restart on multilayer network algorithm, to explore disease state omics-specific graphs and perform enrichment analysis. Results: Network analysis revealed the biosignatures involved in inducing chemokines and inflammatory responses as hubs in the severe and moderate disease phases. We observed distinct biosignatures between severe and moderate disease phases as compared to mild-moderate and mild-severe disease phases. Mild COVID-19 cases were characterized by a unique biosignature comprising C-C Motif Chemokine Ligand 4 (CCL4), and Interferon Regulatory Factor 1 (IRF1). Hepatocyte Growth Factor (HGF), Matrix Metallopeptidase 12 (MMP12), Interleukin 10 (IL10), Nuclear Factor Kappa B Subunit 1 (NFKB1), and suberoylcarnitine form hubs in the omics network that characterizes the moderate disease state. The severe cases were marked by biosignatures such as Signal Transducer and Activator of Transcription 1 (STAT1), Superoxide Dismutase 2 (SOD2), HGF, taurine, lysophosphatidylcholine, diacylglycerol, triglycerides, and sphingomyelin that characterize the disease state. Conclusion: This study identified both biosignatures of different omics types enriched in disease-related pathways and their associated interactions (such as protein-protein, protein-transcript, protein-metabolite, transcript-metabolite, and lipid-lipid interactions) that are unique to mild, moderate, and severe COVID-19 disease states. These biosignatures include molecular features that underlie the observed clinical heterogeneity of COVID-19 and emphasize the need for disease-phase-specific treatment strategies. The approach implemented here can be used to find associations between transcripts, proteins, lipids, and metabolites in other diseases.

17.
Front Vet Sci ; 11: 1360233, 2024.
Article in English | MEDLINE | ID: mdl-39040817

ABSTRACT

Introduction: This study aimed to identify the pathophysiologic causes of death following traumatic injuries in military working dogs (MWDs) and determine the risk factors associated with mortality in MWD following traumatic injuries. The results of this study will allow for better targeting of interventions to ameliorate these pathophysiologic causes of death and inform research priorities directed at the pathophysiology that leads to the death of MWDs. Methods: The final dataset for this study was compiled by using two previously established datasets. Based on review of available data and supplemental records (when available), MWDs in which a definitive cause of death could be determined were included in the study population. These MWDs were assigned a cause of death based on categories previously identified in studies evaluating service member casualties. A group of MWDs who survived their traumatic injury and had similar mechanisms of injury and types of injury to the deceased MWDs were included to allow for comparison and establishment of risk factors associated with MWD death. Variables collected included breed, age, sex, mechanism of injury, survival/non-survival, type of trauma, mechanism of injury, pathophysiology that led to death and pre-hospital care provided. Statistical analysis included Fishers exact test for categorical variables and univariable and multivariable logistic regression to identify factors associated with the MWD death. Results: A total of 84 MWDs (33 non-survivors and 51 survivors) were included in this study. Of the 33 MWDs that died, 27 (81.8%) were noted to be dead on arrival. The pathophysiologic causes of death were found to be hemorrhage (45.5% [n = 15]), head trauma (21.2% [n = 7]), catastrophic tissue destruction (15.2% [n = 5]), pneumothorax (9.1% [n = 3]) and one (3% [n = 1]) of each of the following: septic shock, asphyxiation and burns. Military working dogs that did not receive non-DVM care were 3.55 times more likely to die than those that did receive non-DVM care (95% CI 1.03-12.27). The majority of MWDs died of their injuries before reaching veterinary care. Discussion: To increase the survival of MWDs on the battlefield, further research should focus on developing new interventions and techniques to mitigate the effects of the pathophysiology noted to cause MWD death. Furthermore, given that care by a non-DVM was found to be associated with survival, the implementation of pre-hospital care and early resuscitation techniques should be a continued priority for those treating MWDs at both the point of injury and in the prehospital setting.

19.
Eur J Immunol ; : e2451044, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014923

ABSTRACT

Human cytomegalovirus is a medically important pathogen. Previously, using murine CMV (MCMV), we provided evidence that both neutralizing and nonneutralizing antibodies can confer protection from viral infection in vivo. In this study, we report that serum derived from infected animals had a greater protective capacity in MCMV-infected RAG-/- mice than serum from animals immunized with purified virus. The protective activity of immune serum was strictly dependent on functional Fcγ receptors (FcγR). Deletion of individual FcγRs or combined deletion of FcγRI and FcγRIV had little impact on the protection afforded by serum. Adoptive transfer of CD115-positive cells from noninfected donors demonstrated that monocytes represent important cellular mediators of the protective activity provided by immune serum. Our studies suggest that Fc-FcγR interactions and monocytic cells are critical for antibody-mediated protection against MCMV infection in vivo. These findings may provide new avenues for the development of novel strategies for more effective CMV vaccines or antiviral immunotherapies.

20.
J Am Coll Cardiol ; 84(3): 233-243, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38986667

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DbCM) increases risk of overt heart failure in individuals with diabetes mellitus. Racial and ethnic differences in DbCM remain unexplored. OBJECTIVES: The authors sought to identify racial and ethnic differences among individuals with type 2 diabetes mellitus, structural heart disease, and impaired exercise capacity. METHODS: The ARISE-HF (Aldolase Reductase Inhibitor for Stabilization of Exercise Capacity in Heart Failure) trial is assessing the efficacy of an aldose reductase inhibitor for exercise capacity preservation in 691 persons with DbCM. Baseline characteristics, echocardiographic parameters, and functional capacity were analyzed and stratified by race and ethnicity. RESULTS: The mean age of the study participants was 67.4 years; 50% were women. Black and Hispanic patients had lower use of diabetes mellitus treatments. Black patients had poorer baseline ventricular function and more impaired global longitudinal strain. Overall, health status was preserved, based on Kansas City Cardiomyopathy Questionnaire scores, but reduced exercise capacity was present as evidenced by reduced Physical Activity Scale for the Elderly (PASE) scores. When stratified by race and ethnicity and compared with the entire cohort, Black patients had poorer health status, more reduced physical activity, and a greater impairment in exercise capacity during cardiopulmonary exercise testing, whereas Hispanic patients also displayed compromised cardiopulmonary exercise testing functional capacity. White patients demonstrated higher physical activity and functional capacity. CONCLUSIONS: Racial and ethnic differences exist in baseline characteristics of persons affected by DbCM, with Black and Hispanic study participants demonstrating higher risk features. These insights inform the need to address differences in the population with DbCM. (Safety and Efficacy of AT-001 in Patients With Diabetic Cardiomyopathy [ARISE-HF]; NCT04083339).


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Humans , Female , Male , Diabetic Cardiomyopathies/ethnology , Diabetic Cardiomyopathies/epidemiology , Aged , Middle Aged , Diabetes Mellitus, Type 2/ethnology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Exercise Tolerance/physiology , Hispanic or Latino/statistics & numerical data , Black or African American , Echocardiography , Exercise Test , Heart Failure/ethnology , Heart Failure/physiopathology , Heart Failure/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...