Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 40(8): e105776, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33687089

ABSTRACT

In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large-scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre- to post-implantation epiblast in utero. We identified 496 naïve state-associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.


Subject(s)
Cell Differentiation , Gene Regulatory Networks , Mouse Embryonic Stem Cells/metabolism , Animals , Cells, Cultured , Gene Expression Regulation, Developmental , Mice , Mouse Embryonic Stem Cells/cytology , Transcriptome
2.
Mol Cell ; 81(5): 969-982.e13, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33482114

ABSTRACT

Many genes are regulated by multiple enhancers that often simultaneously activate their target gene. However, how individual enhancers collaborate to activate transcription is not well understood. Here, we dissect the functions and interdependencies of five enhancer elements that together activate Fgf5 expression during exit from naive murine pluripotency. Four intergenic elements form a super-enhancer, and most of the elements contribute to Fgf5 induction at distinct time points. A fifth, poised enhancer located in the first intron contributes to Fgf5 expression at every time point by amplifying overall Fgf5 expression levels. Despite low individual enhancer activity, together these elements strongly induce Fgf5 expression in a super-additive fashion that involves strong accumulation of RNA polymerase II at the intronic enhancer. Finally, we observe a strong anti-correlation between RNA polymerase II levels at enhancers and their distance to the closest promoter, and we identify candidate elements with properties similar to the intronic enhancer.


Subject(s)
Enhancer Elements, Genetic , Fibroblast Growth Factor 5/genetics , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/metabolism , Promoter Regions, Genetic , RNA Polymerase II/genetics , Animals , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Exons , Fibroblast Growth Factor 5/metabolism , Gene Knockout Techniques , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Histones/genetics , Histones/metabolism , Introns , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , RNA Polymerase II/metabolism , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis , Transcription, Genetic , Red Fluorescent Protein
3.
Proc Natl Acad Sci U S A ; 114(52): 13726-13731, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229809

ABSTRACT

The partitioning of cellular components between the nucleus and cytoplasm is the defining feature of eukaryotic life. The nuclear pore complex (NPC) selectively gates the transport of macromolecules between these compartments, but it is unknown whether surveillance mechanisms exist to reinforce this function. By leveraging in situ cryo-electron tomography to image the native cellular environment of Chlamydomonas reinhardtii, we observed that nuclear 26S proteasomes crowd around NPCs. Through a combination of subtomogram averaging and nanometer-precision localization, we identified two classes of proteasomes tethered via their Rpn9 subunits to two specific NPC locations: binding sites on the NPC basket that reflect its eightfold symmetry and more abundant binding sites at the inner nuclear membrane that encircle the NPC. These basket-tethered and membrane-tethered proteasomes, which have similar substrate-processing state frequencies as proteasomes elsewhere in the cell, are ideally positioned to regulate transcription and perform quality control of both soluble and membrane proteins transiting the NPC.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Nuclear Pore/metabolism , Plant Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Chlamydomonas reinhardtii/ultrastructure , Cryoelectron Microscopy , Nuclear Pore/ultrastructure , Proteasome Endopeptidase Complex/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...