Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(7): 7070-7084, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36844552

ABSTRACT

This study examines the influence of subcritical pressure and the physical nature (intact and powder) of coal samples on CO2 adsorption capacity and kinetics in the context of CO2 sequestration in shallow level coal seams. Manometric adsorption experiments were carried out on two anthracite and one bituminous coal samples. Isothermal adsorption experiments were carried out at 298.15 K in two pressure ranges: less than 6.1 MPa and up to 6.4 MPa relevant to gas/liquid adsorption. The adsorption isotherms of intact anthracite and bituminous samples were compared to that of the powdered samples. The powdered samples of the anthracitic samples had a higher adsorption than that of intact samples due to the exposed adsorption sites. The intact and powdered samples of bituminous coal, on the other hand, exhibited comparable adsorption capacities. The comparable adsorption capacity is attributed to the intact samples' channel-like pores and microfractures, where high density CO2 adsorption occurs. The adsorption-desorption hysteresis patterns and the residual amount of CO2 trapped in the pores reinforce the influence of the physical nature of the sample and pressure range on the CO2 adsorption-desorption behavior. The intact 18 ft AB samples showed significantly different adsorption isotherm pattern to that of powdered samples for experiments conducted up to 6.4 MPa equilibrium pressure due to the high-density CO2 adsorbed phase in the intact samples. The adsorption experimental data fit into the theoretical models showed that the BET model fit better than the Langmuir model. The experimental data fit into the pseudo first order, second order, and Bangham pore diffusion kinetic models showed that the rate-determining steps are bulk pore diffusion and surface interaction. Generally, the results obtained from the study demonstrated the significance of conducting experiments with large, intact core samples pertinent to CO2 sequestration in shallow coal seams.

2.
J Environ Manage ; 305: 114390, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34999446

ABSTRACT

This work presents the state-of-the-art review of investigations related to the adsorption process, adsorption models, experimental adsorption results, and influencing factors, considering the main contaminants produced by underground coal gasification (UCG) technology as adsorbates and the various rocks and soils surrounding the UCG cavity as adsorbents. Based on the literature reviewed, it is found that claystone, coal, coal char, shale, and clay materials present a good prospect for effective phenol adsorption; coal, coal char, shale, and clay materials can also remove benzene and some heavy metals from aqueous solutions. However, their performance varies under the effect of the influencing factors, such as the initial concentration of adsorbates in solution, the pH of the solution, the temperature and contact time controlled in the adsorption process, and the adsorbent dosage. A preliminary assessment of the potential of rocks and soils to act as natural buffers in UCG application is provided. The impact of UCG process on the adsorption of contaminants on the surrounding strata together with the major challenges and future perspectives are highlighted and outlined, to identify knowledge deficiencies regarding the retardation of UCG contaminants using the natural buffers. The prospect of surrounding strata as natural buffers can benefit the site selection, design, and commercialization of UCG.


Subject(s)
Coal , Soil , Adsorption , Phenol , Phenols
3.
Environ Sci Pollut Res Int ; 29(2): 2203-2213, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34365600

ABSTRACT

This paper deals with the characterisation of inorganic constitutions generated at various operating conditions in the context of underground coal gasification (UCG). The ex situ small-scale experiments were conducted with coal specimens of different rank, from the South Wales Coalfield, Wales, UK, and Upper Silesian Coal Basin, Poland. The experiments were conducted at various gaseous oxidant ratios (water: oxygen = 1:1 and 2:1), pressures (20 bar and 36 bar) and temperatures (650°C, 750°C and 850°C). Increasing the amount of water in the oxidants proportionately decreased the cationic elements but increased the concentrations of anionic species. The temperature played minor impact, while the high-pressure experiments at temperature optimum to produce methane-rich syngas (750°C) showed significant reduction in cationic element generation. However, both coal specimens produced high amount of anionic species (F, Cl, SO4 and NO3). The "Hard" bituminous coal from Poland produced less gasification residues and condensates than the South Wales anthracitic coal due to its higher reactivity. The inorganic composition found in the solid residue was used in the theoretical calculation to predict the dissolved product concentrations when the solid residue interacts with deep coal seam water in the event of UCG cavity flooding. It was evident from the solubility products of the Cr, Ni and Zn that changes in the groundwater geochemistry occur; hence, their transportation in the subsurface must be studied further.


Subject(s)
Coal , Gases , Poland , Temperature
4.
RSC Adv ; 10(73): 44876-44883, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-35516228

ABSTRACT

In the present work, fresh and Ca poisoned Fe-Ce/Ti catalysts were prepared and used for the NH3-SCR reaction to investigate the effect of Ca doping on the catalytic activity of catalysts. And these catalysts were characterized by BET, XRD, Raman, UV-vis DRS, XPS, H2-TPR, and NH3-TPD techniques. The obtained results demonstrate that Ca doping could lead to an obvious decrease in the catalytic activity of catalysts. The reasons for this may be due to the smaller specific surface area and pore volume, the decreased ratio of Fe3+/Fe2+ and Ce3+/Ce4+, as well as the reduced redox ability and surface acidity.

SELECTION OF CITATIONS
SEARCH DETAIL
...