Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
1.
ACS Infect Dis ; 10(6): 1958-1969, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38841740

ABSTRACT

About 100,000 deaths are attributed annually to infections with methicillin-resistant Staphylococcus aureus (MRSA) despite concerted efforts toward vaccine development and clinical trials involving several preclinically efficacious drug candidates. This necessitates the development of alternative therapeutic options against this drug-resistant bacterial pathogen. Using the Masuda borylation-Suzuki coupling (MBSC) sequence, we previously synthesized and modified naturally occurring bisindole alkaloids, alocasin A, hyrtinadine A and scalaradine A, resulting in derivatives showing potent in vitro and in vivo antibacterial efficacy. Here, we report on a modified one-pot MBSC protocol for the synthesis of previously reported and several undescribed N-tosyl-protected bisindoles with anti-MRSA activities and moderate cytotoxicity against human monocytic and kidney cell lines. In continuation of the mode of action investigation of the previously synthesized membrane-permeabilizing hit compounds, mechanistic studies reveal that bisindoles impact the cytoplasmic membrane of Gram-positive bacteria by promiscuously interacting with lipid II and membrane phospholipids while rapidly dissipating membrane potential. The bactericidal and lipid II-interacting lead compounds 5c and 5f might be interesting starting points for drug development in the fight against MRSA.


Subject(s)
Anti-Bacterial Agents , Indole Alkaloids , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Humans , Indole Alkaloids/pharmacology , Indole Alkaloids/chemistry , Indole Alkaloids/chemical synthesis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Cell Line , Structure-Activity Relationship , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Molecular Structure
2.
Cell Death Discov ; 10(1): 279, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862521

ABSTRACT

A key feature of cancer is the disruption of cell cycle regulation, which is characterized by the selective and abnormal activation of cyclin-dependent kinases (CDKs). Consequently, targeting CDKs via meriolins represents an attractive therapeutic approach for cancer therapy. Meriolins represent a semisynthetic compound class derived from meridianins and variolins with a known CDK inhibitory potential. Here, we analyzed the two novel derivatives meriolin 16 and meriolin 36 in comparison to other potent CDK inhibitors and could show that they displayed a high cytotoxic potential in different lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells. In a kinome screen, we showed that meriolin 16 and 36 prevalently inhibited most of the CDKs (such as CDK1, 2, 3, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 20). In drug-to-target modeling studies, we predicted a common binding mode of meriolin 16 and 36 to the ATP-pocket of CDK2 and an additional flipped binding for meriolin 36. We could show that cell cycle progression and proliferation were blocked by abolishing phosphorylation of retinoblastoma protein (a major target of CDK2) at Ser612 and Thr82. Moreover, meriolin 16 prevented the CDK9-mediated phosphorylation of RNA polymerase II at Ser2 which is crucial for transcription initiation. This renders both meriolin derivatives as valuable anticancer drugs as they target three different Achilles' heels of the tumor: (1) inhibition of cell cycle progression and proliferation, (2) prevention of transcription, and (3) induction of cell death.

3.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731617

ABSTRACT

In this study, a library of 3,7-di(hetero)aryl-substituted 10-(3-trimethylammoniumpropyl)10H-phenothiazine salts is prepared. These title compounds and their precursors are reversible redox systems with tunable potentials. The Hammett correlation gives a very good correlation of the first oxidation potentials with σp parameters. Furthermore, the title compounds and their precursors are blue to green-blue emissive. Screening of the salts reveals for some derivatives a distinct inhibition of several pathogenic bacterial strains (Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli, Aconetobacter baumannii, and Klebsiella pneumoniae) in the lower micromolar range.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Phenothiazines , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Phenothiazines/pharmacology , Phenothiazines/chemistry , Phenothiazines/chemical synthesis , Salts/chemistry , Salts/pharmacology , Staphylococcus aureus/drug effects , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemical synthesis , Escherichia coli/drug effects , Oxidation-Reduction , Bacteria/drug effects , Molecular Structure , Structure-Activity Relationship
4.
Sci Rep ; 14(1): 12565, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822000

ABSTRACT

Using the established synthetic methods, aroyl-S,N-ketene acetals and subsequent bi- and multichromophores can be readily synthesized. Aside from pronounced AIE (aggregation induced emission) properties, these selected examples possess distinct complexometric behavior for various metals purely based on the underlying structural motifs. This affects the fluorescence properties of the materials which can be readily exploited for metal ion detection and for the formation of different metal-aroyl-S,N-ketene acetal complexes that were confirmed by Job plot analysis. In particular, gold(I), iron(III), and ruthenium (III) ions reveal complexation enhanced or quenched emission. For most dyes, weakly coodinating complexes were observed, only in case of a phenanthroline aroyl-S,N-ketene acetal multichromophore, measurements indicate the formation of a strongly coordinating complex. For this multichromophore, the complexation results in a loss of fluorescence intensity whereas for dimethylamino-aroyl-S,N-ketene acetals and bipyridine bichromophores, the observed quantum yield is nearly tripled upon complexation. Even if no stable complexes are formed, changes in absorption and emission properties allow for a simple ion detection.

5.
PeerJ ; 12: e17127, 2024.
Article in English | MEDLINE | ID: mdl-38560457

ABSTRACT

Background: Pudendal neuralgia (PN) is a chronic neuropathy that causes pain, numbness, and dysfunction in the pelvic region. The current state-of-the-art treatment is pulsed radiofrequency (PRF) in which a needle is supposed to be placed close to the pudendal nerve for neuromodulation. Given the effective range of PRF of 5 mm, the accuracy of needle placement is important. This study aimed to investigate the potential of augmented reality guidance for improving the accuracy of needle placement in pulsed radiofrequency treatment for pudendal neuralgia. Methods: In this pilot study, eight subjects performed needle placements onto an in-house developed phantom model of the pelvis using AR guidance. AR guidance is provided using an in-house developed application on the HoloLens 2. The accuracy of needle placement was calculated based on the virtual 3D models of the needle and targeted phantom nerve, derived from CBCT scans. Results: The median Euclidean distance between the tip of the needle and the target is found to be 4.37 (IQR 5.16) mm, the median lateral distance is 3.25 (IQR 4.62) mm and the median depth distance is 1.94 (IQR 7.07) mm. Conclusion: In this study, the first method is described in which the accuracy of patient-specific needle placement using AR guidance is determined. This method could potentially improve the accuracy of PRF needle placement for pudendal neuralgia, resulting in improved treatment outcomes.


Subject(s)
Augmented Reality , Pudendal Nerve , Pudendal Neuralgia , Pulsed Radiofrequency Treatment , Humans , Pudendal Neuralgia/therapy , Pulsed Radiofrequency Treatment/methods , Pilot Projects
6.
Molecules ; 29(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38611899

ABSTRACT

2,6-Diaryl-4H-tetrahydro-thiopyran-4-ones and corresponding sulfoxide and sulfone derivatives were designed to lower the major toxicity of their parent anti-kinetoplatidal diarylideneacetones through a prodrug effect. Novel diastereoselective methodologies were developed and generalized from diarylideneacetones and 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones to allow the introduction of a wide substitution profile and to prepare the related S-oxides. The in vitro biological activity and selectivity of diarylideneacetones, 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones, and their S-sulfoxide and sulfone metabolites were evaluated against Trypanosoma brucei brucei, Trypanosoma cruzi, and various Leishmania species in comparison with their cytotoxicity against human fibroblasts hMRC-5. The data revealed that the sulfides, sulfoxides, and sulfones, in which the Michael acceptor sites are temporarily masked, are less toxic against mammal cells while the anti-trypanosomal potency was maintained against T. b. brucei, T. cruzi, L. infantum, and L. donovani, thus confirming the validity of the prodrug strategy. The mechanism of action is proposed to be due to the involvement of diarylideneacetones in cascades of redox reactions involving the trypanothione system. After Michael addition of the dithiol to the double bonds, resulting in an elongated polymer, the latter-upon S-oxidation, followed by syn-eliminations-fragments, under continuous release of reactive oxygen species and sulfenic/sulfonic species, causing the death of the trypanosomal parasites in the micromolar or submicromolar range with high selectivity indexes.


Subject(s)
Chagas Disease , Prodrugs , Pyrans , Safrole/analogs & derivatives , Sulfhydryl Compounds , Humans , Animals , Oxides , Oxidation-Reduction , Mammals
7.
PLOS Digit Health ; 3(4): e0000458, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635844

ABSTRACT

The conventional treatment for distal radius fractures typically involves immobilization of the injured extremity using a conventional forearm cast. These casts do cause all sorts of discomfort during wear and impose life-style restrictions on the wearer. Personalized 3D printed splints, designed using three-dimensional (3D) imaging systems, might overcome these problems. To obtain a patient specific splint, commercially available 3D camera systems are utilized to capture patient extremities, generating 3D models for splint design. This study investigates the feasibility of utilizing a new camera system (SPENTYS) to capture 3D surface scans of the forearm for the design of 3D printed splints. In a prospective observational cohort study involving 17 healthy participants, we conducted repeated 3D imaging using both the new (SPENTYS) and a reference system (3dMD) to assess intersystem accuracy and repeatability. The intersystem accuracy of the SPENTYS system was determined by comparison of the 3D surface scans with the reference system (3dMD). Comparison of consecutive images acquired per device determined the repeatability. Feasibility was measured with system usability score questionnaires distributed among professionals. The mean absolute difference between the two systems was 0.44 mm (SD:0.25). The mean absolute difference of the repeatability of the reference -and the SPENTYS system was respectively 0.40 mm (SD: 0.30) and 0.53 mm (SD: 0.25). Both repeatability and intersystem differences were within the self-reported 1 mm. The workflow was considered easy and effective, emphasizing the potential of this approach within a workflow to obtain patient specific splint.

8.
RSC Adv ; 14(15): 10638-10643, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567317

ABSTRACT

A novel generation of 7-aryl phenothiazinyl substituted polyacetylenes is readily accessible via controlled rhodium-catalyzed polymerization of the corresponding 3-ethynyl 7-aryl phenothiazines. The monomers are synthesized by Suzuki coupling, Heck coupling, or Buchwald-Hartwig amination, and Bestmann-Ohira reaction. This allows for the introduction of electron donating and releasing substituents with different ligation patterns. The obtained polymers display narrow molecular weight distributions, with very few exceptions, and are soluble in many organic solvents. The photophysical properties of novel monosubstituted polyacetylenes and corresponding monomers were compared. While the monomers exhibit strong emission in solution with quantum yields of up to 0.84 only selected polymers are luminescent (Φf = 0.06) and display moderate Stokes shifts and positive emission solvatochromism.

9.
Cell Death Discov ; 10(1): 125, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461295

ABSTRACT

Meriolin derivatives represent a new class of kinase inhibitors with a pronounced cytotoxic potential. Here, we investigated a newly synthesized meriolin derivative (termed meriolin 16) that displayed a strong apoptotic potential in Jurkat leukemia and Ramos lymphoma cells. Meriolin 16 induced apoptosis in rapid kinetics (within 2-3 h) and more potently (IC50: 50 nM) than the previously described derivatives meriolin 31 and 36 [1]. Exposure of Ramos cells to meriolin 16, 31, or 36 for 5 min was sufficient to trigger severe and irreversible cytotoxicity. Apoptosis induction by all three meriolin derivatives was independent of death receptor signaling but required caspase-9 and Apaf-1 as central mediators of the mitochondrial death pathway. Meriolin-induced mitochondrial toxicity was demonstrated by disruption of the mitochondrial membrane potential (ΔΨm), mitochondrial release of proapoptotic Smac, processing of the dynamin-like GTPase OPA1, and subsequent fragmentation of mitochondria. Remarkably, all meriolin derivatives were able to activate the mitochondrial death pathway in Jurkat cells, even in the presence of the antiapoptotic Bcl-2 protein. In addition, meriolins were capable of inducing cell death in imatinib-resistant K562 and KCL22 chronic myeloid leukemia cells as well as in cisplatin-resistant J82 urothelial carcinoma and 2102EP germ cell tumor cells. Given the frequent inactivation of the mitochondrial apoptosis pathway by tumor cells, such as through overexpression of antiapoptotic Bcl-2, meriolin derivatives emerge as promising therapeutic agents for overcoming treatment resistance.

10.
Chemistry ; 30(17): e202304119, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38227421

ABSTRACT

The concatenation of Suzuki coupling and two-fold Buchwald-Hartwig amination in sequentially palladium-catalyzed consecutive multicomponent syntheses paves a concise, convergent route to diversely functionalized para-biaryl-substituted triarylamines (p-bTAAs) from simple, readily available starting materials. An extensive library of p-bTAAs permits comprehensive investigations of their electronic properties by absorption and emission spectroscopy, cyclic voltammetry, and quantum chemical calculations, which contribute to a deep understanding of their electronic structure. The synthesized p-bTAAs exhibit tunable fluorescence from blue to yellow upon photonic excitation with quantum yields up to 98 % in solution and 92 % in the solid state. Furthermore, a pronounced bathochromic shift of the emission maxima by increasing solvent polarity indicates positive emission solvatochromism. Aggregation-induced enhanced emission (AIEE) in dimethyl sulfoxide (DMSO)/water mixtures causes the formation of intensely blue fluorescent aggregates. Cyclic voltammetry shows reversible first and second oxidations of p-bTAAs at low potentials, which are tunable by variation of the introduced para substituents. 3D Hammett plots resulting from the correlation of oxidation potentials and emission maxima with electronic substituent parameters emphasize the rational design of tailored p-bTAAs with predictable electrochemical and photophysical properties.

11.
Angew Chem Int Ed Engl ; 63(4): e202316246, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38009666

ABSTRACT

A new generation of soluble phenothiazinyl merocyanine substituted polyacetylenes can be readily synthesized by rhodium-catalyzed polymerization of the corresponding 3-ethynyl phenothiazines, accessible by Sonogashira coupling and Knoevenagel condensation. UV/Vis and fluorescence spectroscopy of 7-acceptor-substituted phenothiazinyl polyacetylenes reveal that these polyacetylenes with conjugatively ligated merocyanines are luminescent in solution with positive emission solvatochromism and, in some cases, with distinct solid-state luminescence.

13.
J Org Chem ; 88(21): 15029-15040, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37870950

ABSTRACT

Diversely substituted, partially saturated benzo[f]isoindole-4-carboxylic acids were synthesized by a new three-component reaction (3CR) starting from cinnamic amines (3-arylallylamines), maleimides, and maleic anhydride. The process consists of N-acylation of the amines by maleic anhydride, intramolecular [4 + 2] cycloaddition in vinylarenes (the IMDAV reaction), and the concluding Alder-ene reaction between Diels-Alder intermediates and maleimides. All of the reaction steps proceed in a highly regio- and stereoselective manner, furnishing five adjacent chiral centers and leading to a single diastereoisomer of the title compound. The efficiency of the transformation is secured by thermal conditions or utilization of soft Lewis acids (Yb(OTf)3) as catalysts. The kinetics and mechanism of the 3CR were studied by using dynamic 19F NMR. Based on the NMR data and density functional theory (DFT) calculations, the IMDAV, not the Alder-ene, reaction is the rate-limiting step of the entire process.

14.
Sci Rep ; 13(1): 14399, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658089

ABSTRACT

Alkynylated aroyl-S,N-ketene acetals are readily synthesized in mostly excellent yields by a Sonogashira reaction resulting in a substance library of more than 20 examples. Upon expansion of the reaction sequence by deprotection and concatenating of the copper-click reaction in a one-pot fashion, a library of 11 triazole-ligated aroyl-S,N-ketene acetals is readily accessible. All derivatives show pronounced solid-state emission and aggregation-induced emission properties depending on the nature of the alkynyl or the triazole substituents.

15.
ChemistryOpen ; 12(9): e202300128, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37715367

ABSTRACT

A concise and efficient consecutive three-component alkynylation-addition synthesis of cyclohexene-embedded dicyanomethylene merocyanines furnishes a small library of dyes in moderate to excellent yield. The dyes possess strong absorption coefficients of the longest wavelength absorption bands. According to the crystal structure, the small bond length alternations account for a highly delocalized electronic ground state. The electronic structure of the absorption bands is qualitatively rationalized by TDDFT calculations, which explain that intense HOMO-LUMO transitions along the merocyanine axis lead to cyanine similar Stokes shifts.

16.
Beilstein J Org Chem ; 19: 1379-1385, 2023.
Article in English | MEDLINE | ID: mdl-37736394

ABSTRACT

A library of 19 differently substituted 3-iodoindoles is generated by a consecutive four-component reaction starting from ortho-haloanilines, terminal alkynes, N-iodosuccinimide, and alkyl halides in yields of 11-69%. Initiated by a copper-free alkynylation, followed by a base-catalyzed cyclizive indole formation, electrophilic iodination, and finally electrophilic trapping of the intermediary indole anion with alkyl halides provides a concise one-pot synthesis of 3-iodoindoles. The latter are valuable substrates for Suzuki arylations, which are exemplified with the syntheses of four derivatives, some of them are blue emitters in solution and in the solid state, in good yield.

17.
Med Sci Educ ; 33(4): 873-878, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37546186

ABSTRACT

Objective: Pulmonary anatomy is challenging, due to the high variability and its three-dimensional (3D) shape. While demands in thoracic oncologic surgery are increasing, the transition from open to thoracoscopic surgery is hampering anatomical understanding. This study analyzed the value of a 3D printed lung model in understanding and teaching anatomy. Methods: A 3D pulmonary model was created and tested among different levels of proficiency: 10 experienced surgeons, 10 fellow surgeons and 10 junior residents. They were tested in interpretation of anatomy based on thoracic CT-scans, either using the 3D model or a 2D anatomical atlas. Accuracy of the given answers, time to complete the task and the self-reported level of certainty were scored in each group. Results: In the experienced surgeons group there was no difference in between the 2D-model or 3D-model with a high rate of correct answers in both groups, and no differences in time or certainty. Fellow surgeons highly benefitted from the 3D-model with an improved accuracy from 26.6% to 70.0% (p = 0.001). Time to complete the task was shorter (207 versus 122 s, p < 0.0001) and participants were more secure (median of 4 versus 3, p = 0.007). For junior residents time to complete the task was shorter, the level of certainty was higher, but there was no improvement in accuracy. Conclusions: 3D printing may benefit in understanding anatomical relations in the complex anatomy of the bronchiopulmonary tree, especially for surgeons in training and could benefit in teaching anatomy. Supplementary Information: The online version contains supplementary material available at 10.1007/s40670-023-01807-x.

18.
Chemistry ; 29(64): e202302067, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37638792

ABSTRACT

Aroyl-S,N-ketene acetals represent a peculiar class of heterocyclic merocyanines, compounds bearing pronounced and rather short dipoles with great push-pull characteristics that define their rich properties. They are accessible via a wide array of synthetic concepts and procedures, ranging from addition-elimination and condensation procedures up to rearrangement and metal-mediated reactions. With our work from 2020, aroyl-S,N-ketene acetals have been identified as powerful and promising dyes with pronounced and vastly tunable solid-state emission and aggregation-induced emission properties. One characteristic trademark of this class of dye molecules is the level of control that could be exerted, and which was thoroughly explored. Based on these results, the field was opened to extend the system to bi- and multichromophoric systems by the full toolkit of synthetic organic chemistry thus giving access to even more exciting properties and manifolded substance libraries capitalizing on the AIE properties. This review aims at outlining the reaction-based principles that allow for a swift and facile access to aroyl-S,N-ketene acetals, their methodical and structural evolution and the plethora of fluorescence and aggregation properties.

19.
Chemistry ; 29(59): e202301908, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37475616

ABSTRACT

Symmetric and unsymmetric diaroyl-S,N-ketene acetals can be readily accessed in consecutive syntheses in good to excellent yields by exploiting the inherent nucleophilic character of the methine position. Different aroyl-S,N-ketene acetals as well as acid chlorides yield a library of 19 diaroyl compounds with substitution and linker pattern-tunable emission properties, leading to a significant red-shift of emission in the solid and aggregated state, which was thoroughly investigated. Additionally, the stability of the luminescent aggregates is highly increased. In a follow-up one-pot procedure, pyrazolo-S,N-ketene acetals can easily be accessed employing a nucleophilic cyclocondensation.

20.
J Org Chem ; 88(17): 12519-12525, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37524078

ABSTRACT

The domino process of the palladium-catalyzed coupling reaction of isocyanides with 2H-azirine provides various tetrasubstituted pyrimidines via one C-C bond and two C-N bond formations with satisfactory yields. The title compounds are obtained with good functional group tolerance, high atom economy, and broad substrate scopes.

SELECTION OF CITATIONS
SEARCH DETAIL
...