Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Mater Chem B ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984474

ABSTRACT

Four-dimensional (4D) printing of hydrogels enabled the fabrication of complex scaffold geometries out of static parts. Although current 4D fabrication strategies are promising for creating vascular parts such as tubes, developing branched networks or tubular junctions is still challenging. Here, for the first time, a 4D printing approach is employed to fabricate T-shaped perfusable bifurcation using an extrusion-based multi-material 3D printing process. An alginate/methylcellulose-based dual-component hydrogel system (with defined swelling behavior) is nanoengineered with carbonized alginate (∼100 nm) to introduce anti-oxidative, anti-inflammatory, and anti-thrombotic properties and shape-shifting properties. A computational model to predict shape deformations in the printed hydrogels with defined infill angles was designed and further validated experimentally. Shape deformations of the 3D-printed flat sheets were achieved by ionic cross-linking. An undisrupted perfusion of a dye solution through a T-junction with minimal leakage mimicking blood flow through vessels is also demonstrated. Moreover, human umbilical vein endothelial and fibroblast cells seeded with printed constructs show intact morphology and excellent cell viability. Overall, the developed strategy paves the way for manufacturing self-actuated vascular bifurcations with remarkable anti-thrombotic properties to potentially treat coronary artery diseases.

2.
Sci Rep ; 14(1): 9801, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684706

ABSTRACT

The Covid-19 pandemic outbreak has accelerated tremendous efforts to discover a therapeutic strategy that targets severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to control viral infection. Various viral proteins have been identified as potential drug targets, however, to date, no specific therapeutic cure is available against the SARS-CoV-2. To address this issue, the present work reports a systematic cheminformatic approach to identify the potent andrographolide derivatives that can target methyltransferases of SARS-CoV-2, i.e. nsp14 and nsp16 which are crucial for the replication of the virus and host immune evasion. A consensus of cheminformatics methodologies including virtual screening, molecular docking, ADMET profiling, molecular dynamics simulations, free-energy landscape analysis, molecular mechanics generalized born surface area (MM-GBSA), and density functional theory (DFT) was utilized. Our study reveals two new andrographolide derivatives (PubChem CID: 2734589 and 138968421) as natural bioactive molecules that can form stable complexes with both proteins via hydrophobic interactions, hydrogen bonds and electrostatic interactions. The toxicity analysis predicts class four toxicity for both compounds with LD50 value in the range of 500-700 mg/kg. MD simulation reveals the stable formation of the complex for both the compounds and their average trajectory values were found to be lower than the control inhibitor and protein alone. MMGBSA analysis corroborates the MD simulation result and showed the lowest energy for the compounds 2734589 and 138968421. The DFT and MEP analysis also predicts the better reactivity and stability of both the hit compounds. Overall, both andrographolide derivatives exhibit good potential as potent inhibitors for both nsp14 and nsp16 proteins, however, in-vitro and in vivo assessment would be required to prove their efficacy and safety in clinical settings. Moreover, the drug discovery strategy aiming at the dual target approach might serve as a useful model for inventing novel drug molecules for various other diseases.


Subject(s)
Antiviral Agents , Diterpenes , Methyltransferases , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Viral Nonstructural Proteins , Diterpenes/pharmacology , Diterpenes/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Methyltransferases/antagonists & inhibitors , Methyltransferases/chemistry , Methyltransferases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Cheminformatics/methods , COVID-19/virology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , COVID-19 Drug Treatment
3.
Environ Monit Assess ; 196(2): 115, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38183520

ABSTRACT

Significant changes in rainfall patterns are critical to agriculture, and the dependency of cropping systems on rainfall variability would engender appropriate farming practices and agriculture policies for a climate-resilient agriculture system. This study analyses the significance of rainfall variability on agriculture productivity in the Wayanad district of Kerala (India) using time series data on rainfall (1989-2019) and crop yield (2000-2019). The spatial variability of rainfall patterns reveals a dichotomy between the rain gauge stations in the northern and southern parts of the region. Despite the absence of statistically significant trends in the monthly, seasonal and annual rainfall, based on the Mann-Kendall trend analysis, an increase in the yield of many crops (e.g., winter paddy, banana) is evident, which emphasises the critical role of irrigation in driving the crop productivity. As an adaptation strategy to changing rainfall patterns, irrigation would meet the additional crop water requirement for sustainable agricultural production under the varying rainfall distributions. However, the increase in the area under irrigation in recent years has had significant implications for both surface water and groundwater resources. The conclusive findings suggest that the region requires climate-resilient agriculture, focusing on optimising irrigation and developing sustainable agriculture and water conservation strategies.


Subject(s)
Lepidoptera , Water Resources , Animals , Environmental Monitoring , Agriculture , India , Water
4.
J Biomol Struct Dyn ; 42(4): 1999-2012, 2024.
Article in English | MEDLINE | ID: mdl-37129206

ABSTRACT

With the advent of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak, efforts are still in progress to find out a functional cure for the infection. Among the various protein targets, nsp16 capping protein is one of the vital targets for drug development as it protects the virus against the host cell nucleases and evading innate immunity. The nsp16 protein forms a heterodimer with a co-factor nsp10 and triggers 2'-O-methyltransferase activity which catalyzes the conversion of S-adenosyl methionine into S-adenosyl homocysteine. The free methyl group is transferred to the 2'-O position on ribose sugar at the 5' end of mRNA to form the cap-1 structure which is essential for replication of the virus and evading the innate immunity of the host. In this study, we identify a potential lead natural bioactive compound against nsp16 protein by systematic cheminformatic analysis of more than 144k natural compounds. Virtual screening, molecular docking interactions, ADMET profiling, molecular dynamics (MD) simulations, molecular mechanics-generalized born surface area (MM-GBSA), free energy analysis and density functional theory analysis were used to discover the potential lead compound. Our investigation revealed that ZINC8952607 (methyl-[(6-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-yl)aminomethyl]BLAHone) has the greatest binding affinity and best pharmacokinetic parameters due to presence of carbazol and BLAHone (biaryl moiety). Further, time-dependent MD simulation analysis substantiates the stability and rigidness of nsp16 protein even after interaction with the lead compound. We believe that the compound ZINC8952607 might establish as a novel natural drug candidate against CoVID-19 infection.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Methyltransferases , Humans , Methyltransferases/chemistry , SARS-CoV-2/metabolism , Molecular Docking Simulation , S-Adenosylmethionine/metabolism , Molecular Dynamics Simulation
5.
PLoS One ; 18(9): e0289731, 2023.
Article in English | MEDLINE | ID: mdl-37676882

ABSTRACT

Biocompatible magnetic nanoparticles are effective for gene delivery in vitro and in vivo transfection. These mediators are mainly used to deliver drugs and genes. It can also be used as probes to diagnose and treat various diseases. Magnetic nanoparticles, primarily iron oxide nanoparticles, are used in various biological applications. However, preparing stable and small-size biocompatible core-shell is crucial in site direct gene delivery. In the present study, superparamagnetic iron oxide nanoparticles were synthesized using the chemical co-precipitation method and were functionalized with starch to attain stable particles. These SPIONs were coated with polyethylenimine to give a net positive charge. The fluorescent plasmid DNA bound to the SPIONs were used as a core shell for gene delivery into the HeLa cells via magnetofection. UV-Visible Spectrophotometry analysis showed a peak at 200 nm, which confirms the presence of FeO nanoparticles. The Scanning Electron Microscopy images revealed the formation of spherical-shaped nanoparticles with an average size of 10 nm. X-ray Diffraction also confirmed FeO as a significant constituent element. Vibrating Sample Magnetometry ensures that the nanoparticles are superparamagnetic. Atomic Force Microscopy images show the DNA bound on the surface of the nanoparticles. The gene delivery and transfection efficiency were analyzed by flow cytometry. These nanoparticles could effectively compact the pDNA, allowing efficient gene transfer into the HeLa cell lines.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , HeLa Cells , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/therapy , Transfection , Chemical Precipitation , Coloring Agents
6.
Mol Divers ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749454

ABSTRACT

Covid-19 was declared a world pandemic. Recent studies demonstrated that Covid-19 impairs CNS activity by crossing the blood-brain barrier and ensuing cognitive impairment. In this study, we have utilized Covid-19 main protease (Mpro) as a biological target to repurpose our previously reported multifunctional compounds targeting Alzheimer's disease. Molecular docking, spatial orientation, molecular dynamics simulation, MM-GBSA energy calculation, and DFT studies were carried out with these molecules. Among all the compounds, F27, F44, and F56 exhibited higher binding energy (- 8.03, - 8.65, and - 8.68 kcal/mol, respectively) over the co-crystal ligand O6K (- 7.00 kcal/mol). In MD simulation, compounds F27, F44, and F56 could make a stable complex with Mpro target throughout the simulation. The compounds were synthesized following reported methods and subjected for cytotoxicity, and assessment of their capability to cross the blood-brain barrier in PAMPA assay, and antioxidant property evaluation through DPPH assay. The compounds F27, F44, and F56 exhibited cytocompatibility with the SiHA cell line and also displayed significant antioxidant properties with IC50 = 45.80 ± 0.27 µM, 44.42 ± 0.30 µM, and 42.74 ± 0.23 µM respectively. In the PAMPA assays, the permeability coefficient (Pe) value of F27, F44, and F56 lies in the acceptable range (Pe > 4). The results of the computational and preliminary in-vitro studies strongly corroborate the potential of F27, F44, and F56 as a lead for further optimization in treating the CNS complications associated with Covid-19.

7.
Sensors (Basel) ; 23(12)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37420672

ABSTRACT

Terrain traversability is critical for developing Go/No-Go maps for ground vehicles, which significantly impact a mission's success. To predict the mobility of terrain, one must understand the soil characteristics. In-situ measurements performed in the field are the current method of collecting this information, which is time-consuming, costly, and can be lethal for military operations. This paper investigates an alternative approach using thermal, multispectral, and hyperspectral remote sensing from an unmanned aerial vehicle (UAV) platform. Remotely sensed data combined with machine learning (linear, ridge, lasso, partial least squares (PLS), support vector machines (SVM), and k nearest neighbors (KNN)) and deep learning (multi-layer perceptron (MLP) and convolutional neural network (CNN)) are used to perform a comparative study to estimate the soil properties, such as the soil moisture and terrain strength, used to generate prediction maps of these terrain characteristics. This study found that deep learning outperformed machine learning. Specifically, a multi-layer perceptron performed the best for predicting the percent moisture content (R2/RMSE = 0.97/1.55) and the soil strength (in PSI), as measured by a cone penetrometer for the averaged 0-6" (CP06) (R2/RMSE = 0.95/67) and 0-12" depth (CP12) (R2/RMSE = 0.92/94). A Polaris MRZR vehicle was used to test the application of these prediction maps for mobility purposes, and correlations were observed between the CP06 and the rear wheel slip and the CP12 and the vehicle speed. Thus, this study demonstrates the potential of a more rapid, cost-efficient, and safer approach to predict terrain properties for mobility mapping using remote sensing data with machine and deep learning algorithms.


Subject(s)
Deep Learning , Remote Sensing Technology/methods , Neural Networks, Computer , Machine Learning , Soil , Support Vector Machine
8.
Mol Divers ; 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37351693

ABSTRACT

In this paper, we developed a series of piperic acid (PA) analogs with the aim of overcoming the limitations associated with the natural products for the management of Alzheimer's disease (AD). A comprehensive SAR study was performed to enhance cholinesterase inhibition of PA. The acetylcholinesterase inhibition and its kinetic data suggested 6j as the lead molecule (AChE IC50 = 2.13 ± 0.015 µM, BChE = 28.19 ± 0.20%), in comparison to PA (AChE = 7.14 ± 0.98%) which was further selected for various biological studies in AD models. 6j, exhibited interaction with the peripheral anionic site of AChE, BBB permeability (Pe = 7.98), and antioxidant property (% radical scavenging activity = 35.41 ± 1.09, 2.43 ± 1.65, for 6j and PA at 20 M[Formula: see text], respectively). The result from the metal chelation study suggests that 6j did not effectively chelate iron. The molecular modeling studies suggested that 6j could effectively interact with Ser293, Phe295, Arg296, and Tyr34 of AChE. In the cell-based cytotoxicity studies, 6j exhibited cytocompatibility at the different tested concentrations. The acute toxicity data on mice suggested that compound 6j had no renal and hepatotoxicity at 500 mg/kg. Moreover, 6j could effectively reverse scopolamine-induced amnesia by improving spatial and cognitive memory in mice. The above results strongly suggest that compound 6j may act as a novel multi-targeted lead for AD therapy.

9.
Vet Res ; 53(1): 31, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35436975

ABSTRACT

Trained immunity is the capacity of innate immune cells to produce an improved response against a secondary infection after a previous unrelated infection. Salmonellosis represents a public health issue and affects the pig farming industry. In general, vaccination against salmonellosis is still facing problems regarding the control of distinct serovars. Therefore, we hypothesized that an immunostimulant based on heat inactivated Mycobacterium bovis (HIMB) could have an immune training effect in pigs challenged with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) and decided to explore the amplitude of this non-specific immune response. For this purpose, twenty-four 10 days-old female piglets were randomly separated in three groups: immunized group (n = 10) received orally two doses of HIMB prior to the intratracheal S. Choleraesuis-challenge, positive control group (n = 9) that was only challenged with S. Choleraesuis, and negative control group (n = 5) that was neither immunized nor infected. All individuals were necropsied 21 days post-challenge. HIMB improved weight gain and reduced respiratory symptoms and pulmonary lesions caused by S. Choleraesuis in pigs. Pigs immunized with HIMB showed higher cytokine production, especially of serum TNFα and lung CCL28, an important mediator of mucosal trained immunity. Moreover, immunized pigs showed lower levels of the biomarker of lipid oxidation malondialdehyde and higher activity of the antioxidant enzyme superoxide dismutase than untreated challenged pigs. However, the excretion and tissue colonization of S. Choleraesuis remained unaffected. This proof-of-concept study suggests beneficial clinical, pathological, and heterologous immunological effects against bacterial pathogens within the concept of trained immunity, opening avenues for further research.


Subject(s)
Mycobacterium bovis , Salmonella Infections, Animal , Salmonella enterica , Swine Diseases , Animals , Female , Hot Temperature , Salmonella , Salmonella Infections, Animal/microbiology , Swine , Swine Diseases/microbiology , Swine Diseases/prevention & control
10.
Vet Res ; 52(1): 31, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33627188

ABSTRACT

Animal tuberculosis (TB) is a multi-host disease caused by members of the Mycobacterium tuberculosis complex (MTC). Due to its impact on economy, sanitary standards of milk and meat industry, public health and conservation, TB control is an actively ongoing research subject. Several wildlife species are involved in the maintenance and transmission of TB, so that new approaches to wildlife TB diagnosis have gained relevance in recent years. Diagnosis is a paramount step for screening, epidemiological investigation, as well as for ensuring the success of control strategies such as vaccination trials. This is the first review that systematically addresses data available for the diagnosis of TB in wildlife following the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The article also gives an overview of the factors related to host, environment, sampling, and diagnostic techniques which can affect test performance. After three screenings, 124 articles were considered for systematic review. Literature indicates that post-mortem examination and culture are useful methods for disease surveillance, but immunological diagnostic tests based on cellular and humoral immune response detection are gaining importance in wildlife TB diagnosis. Among them, serological tests are especially useful in wildlife because they are relatively inexpensive and easy to perform, facilitate large-scale surveillance and can be used both ante- and post-mortem. Currently available studies assessed test performance mostly in cervids, European badgers, wild suids and wild bovids. Research to improve diagnostic tests for wildlife TB diagnosis is still needed in order to reach accurate, rapid and cost-effective diagnostic techniques adequate to a broad range of target species and consistent over space and time to allow proper disease monitoring.


Subject(s)
Animals, Wild , Disease Reservoirs/veterinary , Mycobacterium bovis/isolation & purification , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/veterinary , Animals , Disease Reservoirs/microbiology , Tuberculosis/diagnosis , Tuberculosis/microbiology
11.
Pathogens ; 9(6)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549360

ABSTRACT

Vaccination with Bacillus Calmette-Guérin (BCG) constituted a major advance in the prevention of human tuberculosis (TB) in the beginning of the past century. BCG has also a clear potential for use in animals and, in particular, in the main domestic species subjected to TB control programs, cattle. Nowadays, the use of BCG vaccination against TB in cattle is not permitted by European Union legislation because BCG can induce a cellular immune response producing diagnostic interference in the eradication programs based on tuberculin single and comparative intradermal tests imposed worldwide. In this review we recall the history of TB vaccination as well as different vaccine trials and the response to vaccination in both domestic and wild animals. Promising potential inactivated vaccines are also reviewed. Research studies are mainly focused to improve vaccine efficacy, and at the same time to ensure its easy administration, safety and stability in the environment. Great challenges remain, particularly in terms of vaccine candidates and also in the acceptance of vaccination. Vaccination should be included in a strategic plan for integrated control of TB under a "one health" perspective, which also includes other measures such as improved biosafety on farms to avoid or decrease contact between domestic and wild animals or control of wildlife reservoirs to avoid overabundance that may favor infection maintenance.

12.
Prev Vet Med ; 162: 11-17, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30621888

ABSTRACT

BACKGROUND AND OBJECTIVES: Animal tuberculosis (TB) is a multi-host disease involving a wide variety of domestic and wild mammals and causing a significant economic burden and sanitary problems. Wild boar and domestic pigs (Sus scrofa) are indicators of the circulation of the Mycobacterium tuberculosis complex (MTC) and can play a role in its maintenance. The proper diagnosis of MTC contact in these species is, therefore, a key factor as regards controlling TB. The objective of the current study is to evaluate the diagnostic performance of the protein complex P22 as a candidate for use in an in-house ELISA to identify M. tuberculosis complex-specific antibodies for the diagnosis of TB in comparison to the commonly used bPPD-based ELISA (bPPD ELISA) in suids. METHODS: We conducted a retrospective study. Sera were collected from wild boar during hunting season and from domestic pigs during routine handling, and all the animals underwent reference standard tests (detailed necropsy followed by bacteriological culture and isolation). Animal TB was confirmed to be positive in 277 animals and negative in 366 animals based on both reference standard tests. Sera from those animals were tested by P22 ELISA as well as bPPD ELISA. RESULTS: Both ELISAs yielded a good diagnostic value, however, a higher sensitivity (Se) and specificity (Sp) was achieved with the P22 ELISA (Se: 84.1%; CI95%: 79.3-88.2% / Sp: 98.4%; CI95%:96.5-99.4%) when compared to the bPPD ELISA (Se: 77.3%; CI95%: 71.9-82.2% / Sp: 97.3%; CI95%: 95-98.3%). An optimum Sp of 100% (CI95%: 98.54-100%) was attained with white pigs for both the bPPD and the P22 ELISA. DISCUSSION: The results suggest that serological tests for MTC-antibody detection, and particularly the P22 ELISA, are valuable tools in the diagnosis of TB in wild boar and domestic pigs when attempting to detect contact with MTC and thereby facilitate TB control and management.


Subject(s)
Antibodies, Bacterial/immunology , Mycobacterium tuberculosis/immunology , Swine Diseases/diagnosis , Tuberculosis/veterinary , Animals , Animals, Wild/immunology , Animals, Wild/microbiology , Antibodies, Bacterial/blood , Enzyme-Linked Immunosorbent Assay/veterinary , Reproducibility of Results , Retrospective Studies , Serologic Tests/methods , Serologic Tests/veterinary , Sus scrofa/immunology , Sus scrofa/microbiology , Swine , Swine Diseases/immunology , Tuberculosis/diagnosis , Tuberculosis/immunology
13.
Vet World ; 11(4): 557-561, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29805225

ABSTRACT

AIM: This study aims at cloning, sequencing, and phylogenetic analysis of a partial CDS of ligA gene in pET-32a - Escherichia coli DH5α system, with the objective of identifying the conserved nature of the ligA gene in the genus Leptospira. MATERIALS AND METHODS: A partial CDS (nucleotide 1873 to nucleotide 3363) of the ligA gene was amplified from genomic DNA of Leptospira interrogans serovar Canicola by polymerase chain reaction (PCR). The PCR-amplified DNA was cloned into pET-32a vector and transformed into competent E. coli DH5α bacterial cells. The partial ligA gene insert was sequenced and the nucleotide sequences obtained were aligned with the published ligA gene sequences of other Leptospira serovars, using nucleotide BLAST, NCBI. Phylogenetic analysis of the gene sequence was done by maximum likelihood method using Mega 6.06 software. RESULTS: The PCR could amplify the 1491 nucleotide sequence spanning from nucleotide 1873 to nucleotide 3363 of the ligA gene and the partial ligA gene could be successfully cloned in E. coli DH5α cells. The nucleotide sequence when analyzed for homology with the reported gene sequences of other Leptospira serovars was found to have 100% homology to the 1910 bp to 3320 bp sequence of ligA gene of L. interrogans strain Kito serogroup Canicola. The predicted protein consisted of 470 aminoacids. Phylogenetic analysis revealed that the ligA gene was conserved in L.interrogans species. CONCLUSION: The partial ligA gene could be successfully cloned and sequenced from E. coli DH5α cells. The sequence showed 100% homology to the published ligA gene sequences. The phylogenetic analysis revealed the conserved nature of the ligA gene. Further studies on the expression and immunogenicity of the partial LigA protein need to be carried out to determine its competence as a subunit vaccine candidate.

14.
BMC Vet Res ; 13(1): 341, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29145844

ABSTRACT

BACKGROUND: Red deer (Cervus elaphus) is regarded as an epidemiologically relevant host for Mycobacterium bovis (M. bovis) and closely related members of the Mycobacterium tuberculosis complex that cause animal tuberculosis (TB). The standard antemortem screening test for the detection of TB in deer is the intradermal tuberculin skin test, but the detection of interferon-gamma (IFNγ) produced by white blood cells exposed to M. bovis antigens can be used as an alternative or supplemental assay in most TB eradication/control programs. This study aims to develop an in-house sandwich ELISA for deer IFNγ, based on the cross-reactivity of the antibodies to both cervid and bovine IFNγ, and to evaluate the potential of this assay to detect M. bovis-infected red deer in response to the in vitro stimulation of whole-blood cells with bovine purified protein derivative (bPPD), p22 protein complex derived from bPPD or using the specific tuberculous mycobacterial proteins ESAT-6/CFP-10, Rv3615c and Rv3020c. The positive control stimulant used in this study was pokeweed mitogen, which resulted in a consistent induction of IFNγ in samples from red deer, thus allowing the interpretation of the assay. RESULTS: The percentage of animals correctly classified by this technique as M. bovis non-infected was 100%. The detection of infected animals as positive was high and ranged widely depending upon the antigen and the cut-off value applied, as well as the time after infection. Our findings indicate that this protocol may serve as a reliable assay for the antemortem diagnosis of TB from the initial stage of M. bovis-infection, and may also be adequately sensitive. CONCLUSIONS: The suggested optimal antigens and cut-off are bPPD, p22 and the combination of ESAT-6/CFP-10 and Rv3020c with a 0.05 Δ optical density, which yielded a up to 100% correct classification of TB positive and negatve red deer under our experimental conditions. This technique will aid in TB testing of farmed and translocated deer. Future studies should evaluate the ability of this IFNγ assay to detect specific responses under field conditions.


Subject(s)
Deer/microbiology , Interferon-gamma Release Tests/veterinary , Mycobacterium bovis , Tuberculosis/veterinary , Animals , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Mycobacterium bovis/immunology , Tuberculosis/diagnosis , Tuberculosis/microbiology
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 2239-2242, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060342

ABSTRACT

Beamforming is a spatial filtering technique used in hearing aids to improve target sound reception by reducing interference from other directions. In this paper we propose improvements in an existing architecture present for two omnidirectional microphone array based adaptive beamforming for hearing aid applications and implement the same on Xilinx Artix 7 FPGA using VHDL coding and Xilinx Vivado® 2015.2. The nulls are introduced in particular directions by combination of two fixed polar patterns. This combination can be adaptively controlled to steer the null in the direction of noise. The beamform patterns and improvements in SNR values obtained from experiments in a conference room environment are analyzed.


Subject(s)
Hearing Aids , Equipment Design , Noise , Speech Perception
16.
Vet Microbiol ; 208: 195-202, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28888638

ABSTRACT

Deer species (family Cervidae) are often part of the Mycobacterium tuberculosis complex maintenance host community, and tuberculosis (TB) control in deer, including vaccination, is consequently an area of ongoing research. However, most research into deer vaccination against TB is focused on using the live bacillus Calmette Guerin (BCG). Oral inactivated vaccines represent an interesting alternative to either oral or parenteral BCG, since neither diagnostic cross-reactions nor vaccine strain survival are likely to occur. In order to describe the red deer response to heat-inactivated M. bovis (IV) as compared to BCG and to unvaccinated controls (n=5/group), we ran an experiment with five month-old vaccinated red deer, which were challenged with a virulent M. bovis strain 70days later and necropsied at 60days post-challenge. A reduction in the IV group infection burden was discovered. There were significant differences between the IV group and the control group (53% lesion reduction) as regards to the TB lesion scores, but not between other pairs. Complement component 3 plasma levels increased after challenge, and there were no differences between groups. The plasma cytokines (IL-1ß, TNFα, IFNγ, IL-10 and IL-12) levels did not change after vaccination, but IL-1ß, TNFα and IL-10 did so following the challenge. The IL-1ß level increased in all the groups while TNFα levels had a distinct response pattern in the IV group and IL-10 had a distinct response pattern in control group. The results showed that oral vaccination with IV reduces the TB lesion score in red deer challenged with a M. bovis field strain without interfering with the in vivo diagnosis of infection in this species.


Subject(s)
Deer/microbiology , Mycobacterium bovis/immunology , Tuberculosis Vaccines/immunology , Tuberculosis/veterinary , Administration, Oral , Animals , Cytokines/blood , Cytokines/metabolism , Female , Immunity, Innate , Tuberculosis/microbiology , Tuberculosis/prevention & control , Vaccines, Inactivated
17.
Mol Reprod Dev ; 84(11): 1133-1139, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28782859

ABSTRACT

Elevated intracellular calcium concentration and oxidative damage are two major factors contributing to the poor fertility of cryopreserved spermatozoa. Regucalcin (RGN), also known as Senescence marker protein-30 (SMP-30), is a calcium-binding protein with multiple roles that include calcium homeostasis, anti-oxidative, anti-apoptosis, and anti-proliferation. In Drosophila, RGN is reportedly a putative cold-tolerance gene and a cytoprotective role for RGN against intracellular calcium elevation and oxidative stress was reported in P19 cell lines. Given that RGN has anticapacitatory effect and abundant in the male reproductive tract, we hypothesized that it may play a cryoprotective role for spermatozoa. We investigated this by including RGN, at three different concentrations (20, 40, and 60 µg/ml), as a supplement for Tris-egg yolk-based semen extender. Post-thaw metrics of progressive motility, acrosome integrity, and zona pellucida binding of spermatozoa were evaluated for three ejaculates of three clinically normal, breeding Murrah buffaloes. A concentration of 40 µg/ml of recombinant RGN supplemented during sperm freezing resulted in significant increases in the post-thaw progressive motility of spermatozoa (50.6 ± 3.5% vs 40.6 ± 2.6%; p < 0.01), acrosome integrity (53.3 ± 7.4 vs 75.6 ± 6.8; p < 0.05), and zona pellucida binding (31.6 ± 14.0 vs 191.9 ± 12.3 bound spermatozoa; p < 0.01) compared to control conditions without RGN. Thus, ∼1 µM recombinant RGN, which retains the ability to bind calcium, has a cryoprotective effect for buffalo spermatozoa in extender.


Subject(s)
Calcium-Binding Proteins/pharmacology , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Spermatozoa/metabolism , Acrosome Reaction/drug effects , Animals , Buffaloes , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Cryoprotective Agents/chemistry , Dose-Response Relationship, Drug , Male , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Spermatozoa/cytology
18.
Biologicals ; 49: 51-56, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28689674

ABSTRACT

Canine parvoviral enteritis is a highly contagious viral illness caused by canine parvovirus-2 (CPV-2) which affects puppies of mainly 6-20 weeks of age. Vaccination is pivotal in preventing and controlling CPV-2 infection. Determination of antibody status is a critical determinant for successful vaccination. The hemagglutination inhibition (HI) test is 'gold standard' test for quantification of antibodies specific to CPV-2, although the execution of this test is not feasible under field conditions. The present study was undertaken to develop a point of care testing to determine immune status prior to CPV-2 vaccination or to detect seroconversion in immunized dogs by latex agglutination test (LAT) using recombinant antigen. Truncated portion of VP2 protein (tVP2) of CPV-2 was selected on the basis of antigenic indices, overexpressed the recombinant protein in E. coli system and was subsequently used in development of LAT. A total of 59 serum samples obtained from vaccinated (n = 54) and healthy unvaccinated (n = 5) dogs were tested. The positivity was observed in 85% (46/54) of these dogs with varying agglutination pattern. The overall sensitivity and specificity of latex agglutination test in comparison to HI test was recorded as 90% and 88% respectively with an agreement value of 90% (CI = 95%).


Subject(s)
Dog Diseases , Parvoviridae Infections , Parvovirus, Canine/immunology , Vaccination , Viral Proteins/pharmacology , Viral Vaccines/pharmacology , Animals , Dog Diseases/immunology , Dog Diseases/prevention & control , Dogs , Latex Fixation Tests/methods , Parvoviridae Infections/immunology , Parvoviridae Infections/prevention & control , Parvoviridae Infections/veterinary , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , Viral Proteins/immunology , Viral Vaccines/immunology
19.
Protein J ; 36(2): 108-111, 2017 04.
Article in English | MEDLINE | ID: mdl-28191590

ABSTRACT

Regucalcin is a calcium regulating multifunctional protein reported to have many important functions like calcium homeostasis, anti-oxidative, anti-apoptotic and anti-cancerous functions. Although it is demonstrated as a calcium regulating protein, the calcium binding ability of regucalcin is still a controversy. The main reason for the controversy is that it lacks a typical EF hand motif which is common to most of the calcium binding proteins. Even though many studies reported regucalcin as a calcium binding protein, there are some studies reporting regucalcin as non-calcium binding also. In the present study, we investigated the calcium binding ability of recombinant buffalo regucalcin by assessing the secondary structural changes of the protein using circular dichroism spectroscopy after adding Ca2+ to the protein solution. Two types of calcium binding studies were done, one with different concentration of calcium chloride (0.5 mM CaCl2, 1 mM CaCl2, 2 mM CaCl2) and other at different time interval (no incubation and 10 min incubation) after addition of calcium chloride. Significant structural changes were observed in both studies which prove the calcium binding ability of recombinant regucalcin. A constant increase in the α-helix (1.1% with 0.5 mM CaCl2, 1.4% with 1 mM CaCl2, 3.5% with 2 mM CaCl2) and a decrease in ß-sheets (78.5% with 0.5 mM CaCl2, 77.4% with 1 mM CaCl2, 75.7% with 2 mM CaCl2) were observed with the increase in calcium chloride concentration. There was a rapid increase in α-helix and decrease in ß-sheets immediately after addition of calcium chloride, which subsides after 10 min incubation.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Binding Sites , Buffaloes , Calcium/chemistry , Calcium Chloride/chemistry , Calcium Chloride/metabolism , Calcium-Binding Proteins/isolation & purification , Circular Dichroism , Intracellular Signaling Peptides and Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
20.
Protein J ; 35(4): 310-7, 2016 08.
Article in English | MEDLINE | ID: mdl-27460579

ABSTRACT

Regucalcin is a multi-functional protein having roles in calcium homeostasis as well as in anti-apoptotic, anti-prolific and anti-oxidative functions. Recently, it has been reported from the male reproductive tract, but its role in male reproduction needs further investigation; for which the native regucalcin of reproductive origin will be more appropriate. The gel exclusion chromatography followed by diethyl aminoethane cellulose chromatography and two-dimentional cellulose acetate membrane electrophoresis used for its purification are time consuming and less specific. Here, the regucalcin gene from buffalo testis has been cloned, expressed and purified in recombinant form, and subsequently used for raising hyper-immune serum. The Western blot of seminal vesicular fluid probed with anti-regucalcin polyclonal and monoclonal antibodies showed the presence of 28 and 34 kDa bands specific to regucalcin. Further, an affinity matrix has been prepared using anti-regucalcin polyclonal antibodies. An immuno-affinity chromatography method has been standardized to isolate regucalcin from seminal vesicular fluid. The initial complexity of the protein mixture in the seminal vesicular fluid has been reduced by a heat coagulation step. The purified protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band at 68 kDa that has been further confirmed as regucalcin by Liquid chromatography-mass spectrometry/mass spectrometry. The RGN purified from seminal vesicular fluid will be more appropriate for studying its possible role in male reproduction, especially sperm cell capacitation, hyperactivation, acrosome reaction and cryopreservation. The study can be applied in purifying regucalcin from different tissues or species with minor modifications in the methodology.


Subject(s)
Calcium-Binding Proteins/isolation & purification , Calcium/chemistry , Semen/chemistry , Seminal Vesicles/chemistry , Animals , Buffaloes , Calcium/metabolism , Calcium-Binding Proteins/biosynthesis , Calcium-Binding Proteins/genetics , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Male , Protein Binding , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...