Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(36): 43022-43029, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34463478

ABSTRACT

The undesirable sneak current path is one of the key challenges in high-density memory integration for the emerging cross-bar memristor arrays. This work demonstrates a new heterojunction design of oxide multilayer stacking with different oxygen vacancy contents to manipulate the oxidation state. We show that the bipolar resistive switching (BRS) behavior of the Pt/TiOx/Pt cross-bar structure can be changed to complementary resistive switching (CRS) by introducing a thin TiO2 layer in the middle of the TiOx layer to obtain a Pt/TiOx/TiO2/TiOx/Pt device architecture with a double-junction active matrix. In contrast to the BRS in a single-layer TiOx matrix, the device with a double-junction matrix remains in a high-resistance state in the voltage range below the SET voltage, which makes it an efficient structure to overcome the sneak path constraints of undesired half-selected cells that lead to incorrect output reading. This architecture is capable of eliminating these half-selected cells between the nearby cross-bar cells in a smaller programming voltage range. A simplified model for the switching mechanism can be used to account for the observed high-quality switching performance with excellent endurance and current retention properties.

2.
ACS Appl Mater Interfaces ; 12(43): 48998-49005, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33063993

ABSTRACT

As an intermediate form of matter between a single atom or molecule and the bulk, nanoclusters (NCs) provide novel properties because of their high surface area-to-volume ratios and distinct physical and electronic structures. These ultrasmall NCs offer a new approach to advance charge-spin manipulation for novel devices, including spintronics and magnetic tunneling junctions. Here, we deposit monosized ZrO2 NCs over a large area by using gas-phase aggregation followed by in situ size selection by a quadrupole mass filter. These size-specific NCs exhibit sub-oxide photoemission features at binding energies that are dependent on the cluster size (from 3 to 9 nm), which are attributed to different oxygen vacancy defect states. These dopant-free ZrO2 NCs also show strongly size-dependent ferromagnetism, which provides distinct advantages in solubility and homogeneity of magnetism when compared to traditional dilute magnetic semiconductors. A defect-band hybridization-induced magnetic polaron model is proposed to explain the origin of this size-dependent ferromagnetism. This work demonstrates a new protocol of magnetization manipulation by size control and promises potential applications based on these defect-rich size-selected NCs.

3.
Nanoscale ; 11(39): 18159-18168, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31556429

ABSTRACT

Electroforming-free resistive switching in memristors is essential to reliably achieving the performance of high switching speed, high endurance, good signal retention, and low power consumption expected for next-generation computing devices. Although there have been various approaches to resolve the issues observed with the electroforming process in oxide-based memory devices, most of them end up having high SET and RESET voltages and short lifetimes. We present a heterojunction interface of oxygen-vacancy-defect-rich ultrananocrystalline TiOx and TaOx films used as the switching matrix, which enables high-quality electroforming-free switching with a much lower programming voltage (+0.5-0.8 V), a high endurance of over 104 cycles and good retention performance with an estimated device lifetime of over 10 years. The electroforming-free switching behavior is governed by migration of oxygen vacancies driven by electric field localization that is imposed by the ultrananocrystalline nature of the TaOx film, serving as the switching matrix, with the TiOx film serving as an additional oxygen vacancy source to reduce the overall resistivity of TaOx and provide low-bias rectification. The ability to perform electroforming-free resistive switching along with excellent switching repeatability and retention capabilities for various digital and analog programmable voltages enables high scalability and large density integration of the cross-bar ReRAM framework.

4.
ACS Omega ; 3(8): 9956-9965, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459124

ABSTRACT

The impact of lithium-ion implantation and postannealing processes on improving the electrical conductivity and field electron emission (FEE) characteristics of nitrogen-doped nanocrystalline diamond (nNCD) films was observed to be distinctly different from those of undoped NCD (uNCD) films. A high-dose Li-ion implantation induced the formation of electron trap centers inside the diamond grains and amorphous carbon (a-C) phases in grain boundaries for both types of NCD films. Postannealing at 1000 °C healed the defects, eliminated the electron trap centers, and converted the a-C into nanographitic phases. The abundant nanographitic phases in the grain boundaries of the nNCD films as compared to the uNCD films made an interconnected path for effectual electron transport and consequently enhanced the FEE characteristics of nNCD films.

5.
Nanoscale ; 9(38): 14395-14404, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28819665

ABSTRACT

Formation of nanoclusters has attracted a lot of attention in recent years because of their distinct properties from isolated atoms and bulk solids. Here, we focus on the catalytic properties of supported transition metal oxide nanoclusters, such as TaO2, with a well-defined size distribution below 10 nm. We show that their catalytic performance can be greatly enhanced by introducing a reaction promoter such as Pt. Different combinations of precisely size-selected, defect-rich TaOx and Pt nanoclusters are produced by a gas-phase aggregation technique in a special DC magnetron sputtering system. Argon flow rate and aggregation length are carefully optimized to control the sizes of these ultrasmall TaOx and Pt nanoclusters by using a quadrupole mass filter, and TEM studies reveal the different crystalline nature of TaOx (amorphous) and Pt (crystalline) nanoclusters. We have further demonstrated the size-dependent photoanode activity of (TaOx, Pt) nanocluster systems in a photoelectrochemical water splitting reaction, where the Pt nanocluster promoters are found to provide a significant enhancement in the photocurrent density, approximately tripled that was observed from just TaOx nanocluster catalysts alone. The photocurrent density and photoconversion efficiency tend to reduce when Pt nanoclusters become overpopulated due to blocking of the photosensitive TaOx surface. Reducing the Pt nanocluster size resolves this problem by incorporating a greater number of smaller nanocluster promoters without blocking TaOx, which leads to further enhancement in the photocurrent density. The enhanced photocatalytic activity is attributed to synergetic effects introduced by the Pt nanoclusters that act as temporary charge storage sites to facilitate effective separation of a large number of electron-hole pairs, generated from a large number of active sites on the defect-rich amorphous TaOx nanoclusters upon illumination.

6.
ACS Appl Mater Interfaces ; 7(14): 7466-70, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25838244

ABSTRACT

Hybrid solar cells made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) and appropriate amounts of a cosolvent and a fluorosurfactant on planar n-type silicon substrates showed a photoconversion efficiency (PCE) of above 13%. These cells also exhibited stable, reproducible, and high external quantum efficiency (EQE) that was not sensitive to light-bias intensity (LBI). In contrast, solar cells made of pristine PEDOT: PSS showed low PCE and high EQE only under certain measurement conditions. The EQE was found to degrade with increasing LBI. Here we report that the LBI-sensitive variation of EQE of the low-PCE cells is related to a reversible structural transformation from a quinoid to a benzoid structure of PEDOT.

7.
ACS Nano ; 8(11): 11891-8, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25365773

ABSTRACT

Nanoclusters (NCs) are of great interest because they provide the link between the distinct behavior of atoms and nanoparticles and that of bulk materials. Here, we report precisely controlled deposition of size-selected TiO2 NCs produced by gas-phase aggregation in a special magnetron sputtering system. Carefully optimized aggregation length and Ar gas flow are used to control the size distribution, while a quadrupole mass filter provides precise in situ size selection (from 2 to 15 nm). Transmission electron microscopy studies reveal that NCs larger than a critical size (∼8 nm) have a crystalline core with an amorphous shell, while those smaller than the critical size are all amorphous. The TiO2 NCs so produced exhibit remarkable photoelectrochemical water splitting performance in spite of a small amount of material loading. NCs of three different sizes (4, 6, and 8 nm) deposited on H-terminated Si(100) substrates are tested for the photoelectrochemical catalytic performance, and significant enhancement in photocurrent density (0.8 mA/cm(2)) with decreasing NC size is observed with a low saturation voltage of -0.22 V vs Ag/AgCl (0.78 V vs RHE). The enhanced photoconductivity could be attributed to the increase in the specific surface area and increase in the number of active (defect) sites in the amorphous NCs. The unique advantages of the present technique will be further exploited to develop applications based on tunable, size-selected NCs.

8.
J Am Chem Soc ; 136(29): 10478-85, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24992603

ABSTRACT

The increase in interest in the integration of organic-inorganic nanostructures in recent years has promoted the use of hybrid nanoparticles (HNPs) in medicine, energy conversion, and other applications. Conventional hybridization methods are, however, often long, complicated, and multistepped, and they involve biomolecules and discrete nanostructures as separate entities, all of which hinder the practical use of the resulting HNPs. Here, we present a novel, in situ approach to synthesizing size-specific HNPs using Fe-biomolecule complexes as the building blocks. We choose an anticancer peptide (p53p, MW 1.8 kDa) and an enzyme (GOx, MW 160 kDa) as model molecules to demonstrate the versatility of the method toward different types of molecules over a large size range. We show that electrostatic interaction for complex formation of metal hydroxide ion with the partially charged side of biomolecule in the solution is the key to hybridization of metal-biomolecule materials. Electrochemical deposition is then used to produce hybrid NPs from these complexes. These HNPs with controllable sizes ranging from 30 nm to 3.5 µm are found to exhibit superparamagnetic behavior, which is a big challenge for particles in this size regime. As an example of greatly improved properties and functionality of the new hybrid material, in vitro toxicity assessment of Fe-GOx HNPs shows no adverse effect, and the Fe-p53p HNPs are found to selectively bind to cancer cells. The superparamagnetic nature of these HNPs (superparamagnetic even above the size regime of 15-20 nm!), their biocompatibility, and the direct integration approach are fundamentally important to biomineralization and general synthesis strategy for bioinspired functional materials.


Subject(s)
Biocompatible Materials/chemistry , Ferrous Compounds/chemistry , Glucose Oxidase/chemistry , Magnetics , Nanostructures/chemistry , Peptide Fragments/chemistry , Tumor Suppressor Protein p53/chemistry , Electrochemical Techniques , HeLa Cells , Humans
9.
J Am Chem Soc ; 135(30): 10958-61, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-23837524

ABSTRACT

Concave nanostructures are rare because of their thermodynamically unfavorable shapes. We prepared bimetallic FeNi concave nanocubes with high Miller index planes through controlled triggering of the different growth kinetics of Fe and Ni. Taking advantage of the higher activity of the high-index planes, we then fabricated monodispersed concave nanocages via a material-independent electroleaching process. With the high-index facets exposed, these concave nanocubes and nanocages are 10- and 100-fold more active, respectively, toward electrodetection of 4-aminophenol than cuboctahedrons, providing a label-free sensing approach for monitoring toxins in water and pharmaceutical wastes.

SELECTION OF CITATIONS
SEARCH DETAIL
...