Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cortex ; 139: 282-297, 2021 06.
Article in English | MEDLINE | ID: mdl-33933719

ABSTRACT

BACKGROUND: Cognitive functions have been associated with white matter (WM) microstructure in schizophrenia, but most studies are limited by examining only select cognitive measures and single WM tracts in chronic, medicated patients. It is unclear if the cognition-WM relationship differs between antipsychotic-naïve patients with schizophrenia and healthy controls, as differential associations have not been directly examined. Here we examine if there are differential patterns of associations between cognition and WM microstructure in first-episode antipsychotic-naïve patients with schizophrenia and healthy controls, and we characterize reliable contributors to the pattern of associations across multiple cognitive domains and WM regions, in order to elucidate white matter contribution to the neural underpinnings of cognitive deficits. METHODS: Thirty-six first-episode antipsychotic-naïve patients with schizophrenia and 52 matched healthy controls underwent cognitive tests and diffusion-weighted imaging on a 3T Magnetic Resonance Imaging scanner. Using a multivariate partial least squares correlation analysis, we included 14 cognitive variables and mean fractional anisotropy values of 48 WM regions. RESULTS: Initial analyses showed significant group differences in both measures of WM and cognition. There was no group interaction effect in the pattern of associations between cognition and WM microstructure. The combined analysis of patients and controls lead to a significant pattern of associations (omnibus test p = .015). Thirty-four regions and seven cognitive functions contributed reliably to the associations. CONCLUSIONS: The lack of an interaction effect suggests similar associations in first-episode antipsychotic-naïve patients with schizophrenia and healthy controls. This, together with the differences in both WM and cognitive measurements, supports the involvement of WM in cognitive deficits in schizophrenia. Our findings add to the field by showing a coherent picture of the overall pattern of association between cognition and WM. These findings increase our understanding of the impact of WM on cognition, contributing to the search for neuromarkers of cognitive deficits in schizophrenia.


Subject(s)
Antipsychotic Agents , Schizophrenia , White Matter , Antipsychotic Agents/therapeutic use , Brain/diagnostic imaging , Cognition , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , White Matter/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...