Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(3): 757-62, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26739562

ABSTRACT

Drug-evoked plasticity at excitatory synapses on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) drives behavioral adaptations in addiction. MSNs expressing dopamine D1 (D1R-MSN) vs. D2 receptors (D2R-MSN) can exert antagonistic effects in drug-related behaviors, and display distinct alterations in glutamate signaling following repeated exposure to psychostimulants; however, little is known of cell-type-specific plasticity induced by opiates. Here, we find that repeated morphine potentiates excitatory transmission and increases GluA2-lacking AMPA receptor expression in D1R-MSNs, while reducing signaling in D2-MSNs following 10-14 d of forced abstinence. In vivo reversal of this pathophysiology with optogenetic stimulation of infralimbic cortex-accumbens shell (ILC-NAc shell) inputs or treatment with the antibiotic, ceftriaxone, blocked reinstatement of morphine-evoked conditioned place preference. These findings confirm the presence of overlapping and distinct plasticity produced by classes of abused drugs within subpopulations of MSNs that may provide targetable molecular mechanisms for future pharmacotherapies.


Subject(s)
Morphine/pharmacology , Neuronal Plasticity/drug effects , Nucleus Accumbens/physiology , Animals , Anti-Bacterial Agents/pharmacology , Ceftriaxone/pharmacology , Genotype , Long-Term Potentiation/drug effects , Male , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Neurons/drug effects , Neurons/physiology , Nucleus Accumbens/drug effects , Optical Phenomena , Protein Subunits/metabolism , Receptors, AMPA/metabolism , Signal Transduction/drug effects
2.
Proc Natl Acad Sci U S A ; 111(29): 10755-60, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-25002517

ABSTRACT

ML297 was recently identified as a potent and selective small molecule agonist of G-protein-gated inwardly rectifying K(+) (GIRK/Kir3) channels. Here, we show ML297 selectively activates recombinant neuronal GIRK channels containing the GIRK1 subunit in a manner that requires phosphatidylinositol-4,5-bisphosphate (PIP2), but is otherwise distinct from receptor-induced, G-protein-dependent channel activation. Two amino acids unique to the pore helix (F137) and second membrane-spanning (D173) domain of GIRK1 were identified as necessary and sufficient for the selective activation of GIRK channels by ML297. Further investigation into the behavioral effects of ML297 revealed that in addition to its known antiseizure efficacy, ML297 decreases anxiety-related behavior without sedative or addictive liabilities. Importantly, the anxiolytic effect of ML297 was lost in mice lacking GIRK1. Thus, activation of GIRK1-containing channels by ML297 or derivatives may represent a new approach to the treatment of seizure and/or anxiety disorders.


Subject(s)
Anti-Anxiety Agents/pharmacology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Ion Channel Gating/drug effects , Phenylurea Compounds/pharmacology , Pyrazoles/pharmacology , Amino Acid Sequence , Animals , Baclofen/pharmacology , Behavior, Animal/drug effects , G Protein-Coupled Inwardly-Rectifying Potassium Channels/chemistry , Hippocampus/cytology , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Neurons/drug effects , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...