Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39186306

ABSTRACT

The City of Baltimore, MD has a history of problems with environmental justice (EJ), air pollution, and the urban heat island (UHI) effect. Current chemical transport models lack the resolution to simulate concentrations on the scale needed, about 100 m, to identify the neighborhoods with anomalously high air pollution levels. In this paper we introduce the capabilities of a mobile laboratory and an initial survey of several pollutants in Baltimore to identify which communities are exposed to disproportionate concentrations of air pollution and to which species. High concentrations of black carbon (BC) stood out at some locations - near major highways, downtown, and in the Curtis Bay neighborhood of Baltimore. Results from the mobile lab are confirmed with longer-term, low-cost monitoring. In Curtis Bay, higher concentrations of BC were measured along Pennington Ave. (mean [5th to 95th percentiles] = 2.08 [2.0- 10.9] µg m-3) than along Curtis Ave. just ~150 m away (0.67[0.1- 1.8] µg m-3). Other species, including criteria pollutants ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and fine particulate matter (PM2.5), showed little gradient. Observations with high spatial and temporal resolution help isolate the mechanisms leading to locally high pollutant concentrations. The difference in BC appears to result not from heavier truck traffic or slower dispersion but from the interruptions in traffic flow. Pennington Ave. has three stoplights while Curtis Ave. has none. As heavy-duty diesel-powered vehicles accelerate, they experience turbo-lag and the resulting rich air-fuel mixture exacerbates BC emissions. Immediate mediation might be achieved through smoother traffic flow, and the long-term solution through replacing heavy-duty trucks with electric vehicles.Implication Statement: We present results documenting the locations within Baltimore of high concentrations of Black Carbon pollution and identify the likely source - diesel exhaust emissions exacerbated by stop-and-go traffic and associated turbo-lag. This suggests solutions (smoother traffic, retrofit particulate filters, replacement of diesel with electric vehicles) that would enhance Environmental Justice (EJ) and could be applied to other cities with EJ problems.Synopsis: This paper presents observations of atmospheric black carbon aerosol showing impacts on environmental justice, then identifies causes and suggests solutions.

2.
Article in English | MEDLINE | ID: mdl-38099060

ABSTRACT

Introduction: Curtis Bay (CB) is an environmental justice (EJ) community in South Baltimore. With a high concentration of industrial polluters and compounding non-chemical stressors, CB has experienced socioeconomic, quality of life, and health burdens for over 100 years. Today, these polluters include the open-air CSX Coal Terminal, waste-to-energy incinerators, and heavy diesel traffic through residential areas. The Community of Curtis Bay Association, Free Your Voice, and South Baltimore Community Land Trust are local organizations enacting a vision for equitable, healthy, and community-led development without industrial encroachment. In response to community-identified EJ concerns and an explosion at the CSX Coal Terminal, CB community groups partnered with academic researchers to develop a community-driven hyperlocal air monitoring and capacity building approach. This paper describes this approach to characterizing hyperlocal air quality in CB, building bridges between community residents and regulatory agencies, and nurturing a cohesive and effective community-academic partnership toward EJ. Methods: Using hyperlocal air monitoring, we are collecting real-time air pollution (particulate matter, black carbon, and ground-level gas species) and meteorological data from 15 low-cost sensors in residential and industrial areas of CB. We also use trail cameras to record activities at the CSX Coal Terminal. We merge air pollution and industrial activity data to evaluate the following: overall air quality in CB, multi-air pollutant profiles of elevated events, spatiotemporal changes in air quality in the community, patterns of industrial activity, and potential correlations between air quality and observed industrial activity. Members of our partnership also lead a high school course educating students about the history and ongoing efforts of the EJ movement in their community. Students in this course learn how to employ qualitative and quantitative data collection and analysis methods to bring scientific support to community EJ concerns. Results and Discussion: Our hyperlocal air monitoring network and community-academic partnership are continuing to evolve and have already demonstrated the ability to respond to community-identified EJ issues with real-time data while developing future EJ leaders. Our reflections can assist other community and academic groups in developing strong and fruitful partnerships to address similar EJ issues.

SELECTION OF CITATIONS
SEARCH DETAIL