Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotheranostics ; 8(2): 150-162, 2024.
Article in English | MEDLINE | ID: mdl-38328615

ABSTRACT

Developing a biocompatible and biodegradable graphene-based fluorescent nanoprobe with the ability to visualize live cells could be interesting for intracellular imaging and monitoring the efficiency of chemotherapy. Herein, we report a biodegradable and biocompatible hybrid fluorescent graphene oxide (GO)-ZnS(Mn) composite synthesized via in situ growth of ZnS(Mn) quantum dots (QDs) on the surface of GO in the aqueous medium. The prepared 'GO-ZnS(Mn)' composite was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and high-resolution transmission electron microscopy (HR-TEM) along with selected area electron diffraction (SAED). Further, the fluorescence properties of the GO-ZnS(Mn) composite were studied using fluorescence emission spectroscopy. The composite material exhibited a strong and broad visible light fluorescence from 500 to 600 nm by excitation with 365 nm (UV) light. The cytotoxic experiments of folic acid (FA) conjugated GO-ZnS(Mn) using MTT [(3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide)] assay revealed that the composite had excellent biocompatibility even at higher concentrations up to 200 µg/mL in HeLa cell lines. Next, the bioimaging experiments carried out using confocal fluorescence laser scanning microscopy (CLSM) revealed that GO-ZnS(Mn) composite was taken up by the HeLa cells effectively within 12 h of incubation via receptor (folate) mediated endocytosis with strong fluorescence throughout the cell surface. Finally, the biodegradability of GO-ZnS(Mn) composite was studied by treating it with human myeloperoxidase enzyme (hMPO) isolated from the primary immune cells, neutrophils, which is important to understand the in vivo fate of GO-Zns(Mn). The HR-TEM and Raman analyses confirmed the biodegradation of GO-ZnS(Mn) within 15 h of hMPO treatment. Thus, the biodegradable GO-ZnS (Mn) composite could be helpful for chemotherapy and bioimaging applications.


Subject(s)
Graphite , Nanocomposites , Quantum Dots , Humans , Quantum Dots/chemistry , HeLa Cells , Graphite/chemistry , Nanocomposites/chemistry
2.
Sci Adv ; 7(18)2021 04.
Article in English | MEDLINE | ID: mdl-33931452

ABSTRACT

RNA-based therapies offer unique advantages for treating brain tumors. However, tumor penetrance and uptake are hampered by RNA therapeutic size, charge, and need to be "packaged" in large carriers to improve bioavailability. Here, we have examined delivery of siRNA, packaged in 50-nm cationic lipid-polymer hybrid nanoparticles (LPHs:siRNA), combined with microbubble-enhanced focused ultrasound (MB-FUS) in pediatric and adult preclinical brain tumor models. Using single-cell image analysis, we show that MB-FUS in combination with LPHs:siRNA leads to more than 10-fold improvement in siRNA delivery into brain tumor microenvironments of the two models. MB-FUS delivery of Smoothened (SMO) targeting siRNAs reduces SMO protein production and markedly increases tumor cell death in the SMO-activated medulloblastoma model. Moreover, our analysis reveals that MB-FUS and nanoparticle properties can be optimized to maximize delivery in the brain tumor microenvironment, thereby serving as a platform for developing next-generation tunable delivery systems for RNA-based therapy in brain tumors.


Subject(s)
Brain Neoplasms , Nanoparticles , Adult , Blood-Brain Barrier/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Cations/metabolism , Cell Line, Tumor , Child , Humans , Microbubbles , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Single-Cell Analysis , Tumor Microenvironment
3.
Biomolecules ; 11(4)2021 04 02.
Article in English | MEDLINE | ID: mdl-33918484

ABSTRACT

Biological materials derived from extracellular matrix (ECM) proteins have garnered interest as their composition is very similar to that of native tissue. Herein, we report the use of human cornea derived decellularized ECM (dECM) microparticles dispersed in human fibrin sealant as an accessible therapeutic alternative for corneal anterior stromal reconstruction. dECM microparticles had good particle size distribution (≤10 µm) and retained the majority of corneal ECM components found in native tissue. Fibrin-dECM hydrogels exhibited compressive modulus of 70.83 ± 9.17 kPa matching that of native tissue, maximum burst pressure of 34.3 ± 3.7 kPa, and demonstrated a short crosslinking time of ~17 min. The fibrin-dECM hydrogels were found to be biodegradable, cytocompatible, non-mutagenic, non-sensitive, non-irritant, and supported the growth and maintained the phenotype of encapsulated human corneal stem cells (hCSCs) in vitro. In a rabbit model of anterior lamellar keratectomy, fibrin-dECM bio-adhesives promoted corneal re-epithelialization within 14 days, induced stromal tissue repair, and displayed integration with corneal tissues in vivo. Overall, our results suggest that the incorporation of cornea tissue-derived ECM microparticles in fibrin hydrogels is non-toxic, safe, and shows tremendous promise as a minimally invasive therapeutic approach for the treatment of superficial corneal epithelial wounds and anterior stromal injuries.


Subject(s)
Cornea/cytology , Extracellular Matrix/metabolism , Wound Healing , Animals , Cadaver , Cell Proliferation , Cornea/pathology , Cornea/physiology , Corneal Diseases/pathology , Corneal Diseases/therapy , Extracellular Matrix/chemistry , Fibrin/chemistry , Humans , Hydrogels/chemistry , Rabbits , Stem Cell Transplantation , Stem Cells/cytology , Stem Cells/metabolism , Tissue Engineering
4.
Adv Drug Deliv Rev ; 148: 252-289, 2019 08.
Article in English | MEDLINE | ID: mdl-30421721

ABSTRACT

The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.


Subject(s)
Nanostructures/chemistry , Nanotechnology , Nervous System Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Precision Medicine , Drug Delivery Systems , Humans , Nervous System Diseases/diagnosis , Neuroprotective Agents/chemistry
5.
Heliyon ; 3(4): e00276, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28409183

ABSTRACT

IL-10 is a crucial anti-inflammatory cytokine which can also exert a seemingly divergent immunostimulatory effects under certain conditions. We found high levels of the cytokine in a xenogeneic GVHD model where NOD-scid IL2rγcnull (NSG) mice were transplanted with human PBMCs in presence of IL-2. Presence of exogenous IL-10 altered the kinetics of IL-2 induced human T cell reconstitution in vivo, showing an initial delay, followed by rapid expansion. Further, compared to IL-2 alone, treatment with IL-2 in combination with IL-10 increased survival in most animals and completely protected ∼20% of mice from GVHD. Additionally, IL-2 induced expansion of both CD4+ and CD8+ xenoreactive T cells whereas a combination of IL-2 and IL-10 resulted in selective expansion of CD4+ T cells only. TCR Vß repertoire analysis of CD4+ T cells showed that in contrast to IL-2 alone, simultaneous presence of both cytokines drastically reduced the Vß repertoire of the expanded CD4+ T cells. Highly restricted Vß usage was also observed when the cytokine combination was tested in an allogeneic GVHD model where NOD-scid IL2rγcnull mice expressing HLA-DR4 (NSG-DR4) were transplanted with purified CD4+ T cells from HLA-DR4 negative donors. Taken together, our results demonstrate that IL-10 can profoundly modulate the subset composition and repertoire of responding T cells during GVHD.

SELECTION OF CITATIONS
SEARCH DETAIL
...