Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108341

ABSTRACT

Exposure to heavy metals, including cadmium (Cd), can induce neurotoxicity and cell death. Cd is abundant in the environment and accumulates in the striatum, the primary brain region selectively affected by Huntington's disease (HD). We have previously reported that mutant huntingtin protein (mHTT) combined with chronic Cd exposure induces oxidative stress and promotes metal dyshomeostasis, resulting in cell death in a striatal cell model of HD. To understand the effect of acute Cd exposure on mitochondrial health and protein degradation pathways, we hypothesized that expression of mHTT coupled with acute Cd exposure would cooperatively alter mitochondrial bioenergetics and protein degradation mechanisms in striatal STHdh cells to reveal novel pathways that augment Cd cytotoxicity and HD pathogenicity. We report that mHTT cells are significantly more susceptible to acute Cd-induced cell death as early as 6 h after 40 µM CdCl2 exposure compared with wild-type (WT). Confocal microscopy, biochemical assays, and immunoblotting analysis revealed that mHTT and acute Cd exposure synergistically impair mitochondrial bioenergetics by reducing mitochondrial potential and cellular ATP levels and down-regulating the essential pro-fusion proteins MFN1 and MFN2. These pathogenic effects triggered cell death. Furthermore, Cd exposure increases the expression of autophagic markers, such as p62, LC3, and ATG5, and reduces the activity of the ubiquitin-proteasome system to promote neurodegeneration in HD striatal cells. Overall, these results reveal a novel mechanism to further establish Cd as a pathogenic neuromodulator in striatal HD cells via Cd-triggered neurotoxicity and cell death mediated by an impairment in mitochondrial bioenergetics and autophagy with subsequent alteration in protein degradation pathways.


Subject(s)
Cadmium , Huntington Disease , Animals , Cadmium/metabolism , Huntington Disease/metabolism , Proteolysis , Mitochondrial Dynamics , Corpus Striatum/metabolism , Cell Death , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Disease Models, Animal
2.
Food Chem Toxicol ; 152: 112178, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33831500

ABSTRACT

Developmental methylmercury (MeHg) exposure selectively targets the cerebral and cerebellar cortices, as seen by disruption of cytoarchitecture and glutamatergic (GLUergic) neuron hypoplasia. To begin to understand the mechanisms of this loss of GLUergic neurons, we aimed to develop a model of developmental MeHg neurotoxicity in human-induced pluripotent stem cells differentiating into cortical GLUergic neurons. Three dosing paradigms at 0.1 µM and 1.0 µM MeHg, which span different stages of neurodevelopment and reflect toxicologically relevant accumulation levels seen in human studies and mammalian models, were established. With these exposure paradigms, no changes were seen in commonly studied endpoints of MeHg toxicity, including viability, proliferation, and glutathione levels. However, MeHg exposure induced changes in mitochondrial respiration and glycolysis and in markers of neuronal differentiation. Our novel data suggests that GLUergic neuron hypoplasia seen with MeHg toxicity may be due to the partial inhibition of neuronal differentiation, given the increased expression of the early dorsal forebrain marker FOXG1 and corresponding decrease in expression on neuronal markers MAP2 and DCX and the deep layer cortical neuronal marker TBR1. Future studies should examine the persistent and latent functional effects of this MeHg-induced disruption of neuronal differentiation as well as transcriptomic and metabolomic alterations that may mediate MeHg toxicity.


Subject(s)
Cell Differentiation/drug effects , Induced Pluripotent Stem Cells/drug effects , Methylmercury Compounds/toxicity , Neurons/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Doublecortin Domain Proteins , Doublecortin Protein , Forkhead Transcription Factors/metabolism , Glutathione/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism , No-Observed-Adverse-Effect Level
3.
Molecules ; 26(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671818

ABSTRACT

Manganese (Mn) is a biologically essential metal, critical as a cofactor for numerous enzymes such a glutamine synthetase and kinases such as ataxia-telangiectasia mutated (ATM). Similar to other essential metals such as iron and zinc, proper levels of Mn need to be achieved while simultaneously being careful to avoid excess levels of Mn that can be neurotoxic. A lifetime of occupational exposure to Mn can often lead to a Parkinsonian condition, also known as "manganism", characterized by impaired gait, muscle spasms, and tremors. Despite the importance of its regulation, the mechanisms underlying the transport and homeostasis of Mn are poorly understood. Rather than taking a protein or gene-targeted approach, our lab recently took a high-throughput-screening approach to identify 41 small molecules that could significantly increase or decrease intracellular Mn in a neuronal cell model. Here, we report characterization of these small molecules, which we refer to as the "Mn toolbox". We adapted a Fura-2-based assay for measuring Mn concentration and for measuring relative concentrations of other divalent metals: nickel, copper, cobalt, and zinc. Of these 41 small molecules, we report here the identification of three that selectively influence cellular Mn but do not influence the other divalent metals tested. The patterns of activity across divalent metals and the discovery of Mn-selective small molecules has potential pharmacological and scientific utility.


Subject(s)
Manganese/metabolism , Small Molecule Libraries/metabolism , Animals , Cells, Cultured , Cluster Analysis , Manganese/analysis , Mice , Small Molecule Libraries/analysis
4.
Neurotoxicology ; 70: 48-61, 2019 01.
Article in English | MEDLINE | ID: mdl-30399392

ABSTRACT

Huntington's disease (HD) is functionally linked to environmental factors including cigarette use and dyshomeostasis in the levels of metals. Interestingly, one of the most abundant heavy metals in cigarettes is cadmium (Cd), which also accumulates in the striatum and causes neurotoxicity upon exposure. Thus, we hypothesized that heterozygous huntingtin (HTT), responsible for the majority of cases of HD in patients, in combination with Cd exposure would cause neurotoxicity and neurodegeneration via increased intracellular accumulation of Cd and activation of oxidative stress signaling mechanisms in a mouse striatal cell line model of HD. We report that heterozygous HTT striatal cells are significantly more susceptible to Cd-induced cytotoxicity as compared to wild-type HTT cells upon exposure for 48 h. The heterozygous HTT and Cd-induced cytotoxicity led to a NADPH oxidase (NOX) mediated oxidative stress that was attenuated by exogenous antioxidants and a NOX inhibitor, apocynin. Heterozygous HTT coupled with Cd exposure caused increased expression of protein kinase C δ (PKCδ) and other key oxidative stress proteins levels, enhanced the activation of caspase-9 and caspase-3 mediated apoptosis, and blocked the overexpression of extracellular signal-regulated kinase (ERK). We observed significantly greater intracellular accumulation of Cd and reduced expression of divalent metal transporter 1 (DMT1) protein in the heterozygous HTT striatal cells upon Cd exposure. Treatment with zinc, manganese, and iron as well as exogenous antioxidants significantly attenuated the Cd-induced cytotoxicity. Collectively, these results demonstrate that heterozygous HTT exhibits greater neurotoxic properties when coupled with Cd exposure to cause cell death via caspase mediated apoptosis, altered metal transport, and modulation of ERK and PKCδ dependent oxidative signaling mechanisms.


Subject(s)
Cadmium/toxicity , Corpus Striatum/metabolism , Huntingtin Protein/metabolism , Nerve Degeneration/metabolism , Oxidative Stress/physiology , Protein Kinase C-delta/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Biological Transport/drug effects , Biological Transport/physiology , Cell Line, Transformed , Corpus Striatum/drug effects , Dose-Response Relationship, Drug , Huntingtin Protein/genetics , Metals, Heavy/metabolism , Mice , Mice, Transgenic , Nerve Degeneration/chemically induced , Nerve Degeneration/genetics , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...