Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Nutrients ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931284

ABSTRACT

BACKGROUND: High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice fed high concentrations of these fats, in the absence of sucrose, remains to be elucidated. The aim of the study was to test whether the sucrose-free cocoa butter-based high-fat diet (C-HFD) feeding in mice leads to gut dysbiosis that associates with a pathologic phenotype marked by hepatic steatosis, low-grade inflammation, perturbed glucose homeostasis, and insulin resistance, compared with control mice fed the fish oil based high-fat diet (F-HFD). RESULTS: C57BL/6 mice (5-6 mice/group) were fed two types of high fat diets (C-HFD and F-HFD) for 24 weeks. No significant difference was found in the liver weight or total body weight between the two groups. The 16S rRNA sequencing of gut bacterial samples displayed gut dysbiosis in C-HFD group, with differentially-altered microbial diversity or relative abundances. Bacteroidetes, Firmicutes, and Proteobacteria were highly abundant in C-HFD group, while the Verrucomicrobia, Saccharibacteria (TM7), Actinobacteria, and Tenericutes were more abundant in F-HFD group. Other taxa in C-HFD group included the Bacteroides, Odoribacter, Sutterella, Firmicutes bacterium (AF12), Anaeroplasma, Roseburia, and Parabacteroides distasonis. An increased Firmicutes/Bacteroidetes (F/B) ratio in C-HFD group, compared with F-HFD group, indicated the gut dysbiosis. These gut bacterial changes in C-HFD group had predicted associations with fatty liver disease and with lipogenic, inflammatory, glucose metabolic, and insulin signaling pathways. Consistent with its microbiome shift, the C-HFD group showed hepatic inflammation and steatosis, high fasting blood glucose, insulin resistance, increased hepatic de novo lipogenesis (Acetyl CoA carboxylases 1 (Acaca), Fatty acid synthase (Fasn), Stearoyl-CoA desaturase-1 (Scd1), Elongation of long-chain fatty acids family member 6 (Elovl6), Peroxisome proliferator-activated receptor-gamma (Pparg) and cholesterol synthesis (ß-(hydroxy ß-methylglutaryl-CoA reductase (Hmgcr). Non-significant differences were observed regarding fatty acid uptake (Cluster of differentiation 36 (CD36), Fatty acid binding protein-1 (Fabp1) and efflux (ATP-binding cassette G1 (Abcg1), Microsomal TG transfer protein (Mttp) in C-HFD group, compared with F-HFD group. The C-HFD group also displayed increased gene expression of inflammatory markers including Tumor necrosis factor alpha (Tnfa), C-C motif chemokine ligand 2 (Ccl2), and Interleukin-12 (Il12), as well as a tendency for liver fibrosis. CONCLUSION: These findings suggest that the sucrose-free C-HFD feeding in mice induces gut dysbiosis which associates with liver inflammation, steatosis, glucose intolerance and insulin resistance.


Subject(s)
Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome , Insulin Resistance , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Male , Mice , Fatty Liver/etiology , Liver/metabolism , Liver/drug effects , Dietary Fats/adverse effects , Sucrose/adverse effects
2.
Cells ; 13(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474427

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is manifested by hepatic steatosis, insulin resistance, hepatocyte death, and systemic inflammation. Obesity induces steatosis and chronic inflammation in the liver. However, the precise mechanism underlying hepatic steatosis in the setting of obesity remains unclear. Here, we report studies that address this question. After 14 weeks on a high-fat diet (HFD) with high sucrose, C57BL/6 mice revealed a phenotype of liver steatosis. Transcriptional profiling analysis of the liver tissues was performed using RNA sequencing (RNA-seq). Our RNA-seq data revealed 692 differentially expressed genes involved in processes of lipid metabolism, oxidative stress, immune responses, and cell proliferation. Notably, the gene encoding neutral sphingomyelinase, SMPD3, was predominantly upregulated in the liver tissues of the mice displaying a phenotype of steatosis. Moreover, nSMase2 activity was elevated in these tissues of the liver. Pharmacological and genetic inhibition of nSMase2 prevented intracellular lipid accumulation and TNFα-induced inflammation in in-vitro HepG2-steatosis cellular model. Furthermore, nSMase2 inhibition ameliorates oxidative damage by rescuing PPARα and preventing cell death associated with high glucose/oleic acid-induced fat accumulation in HepG2 cells. Collectively, our findings highlight the prominent role of nSMase2 in hepatic steatosis, which could serve as a potential therapeutic target for NAFLD and other hepatic steatosis-linked disorders.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Sphingomyelin Phosphodiesterase , Mice, Inbred C57BL , Inflammation , Obesity/metabolism , Esterases
3.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894865

ABSTRACT

Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.


Subject(s)
NF-kappa B , Tumor Necrosis Factor-alpha , Humans , Endoplasmic Reticulum Stress , Glucose , Inflammation , NF-kappa B/metabolism , Obesity , Reactive Oxygen Species/metabolism , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
4.
Cells ; 12(7)2023 03 27.
Article in English | MEDLINE | ID: mdl-37048092

ABSTRACT

Obesity is characterized by chronic low-grade inflammation. Obese people have higher levels of caveolin-1 (CAV1), a structural and functional protein present in adipose tissues (ATs). We aimed to define the inflammatory mediators that influence CAV1 gene regulation and the associated mechanisms in obesity. Using subcutaneous AT from 27 (7 lean and 20 obese) normoglycemic individuals, in vitro human adipocyte models, and in vivo mice models, we found elevated CAV1 expression in obese AT and a positive correlation between the gene expression of CAV1, tumor necrosis factor-alpha (TNF-α), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). CAV1 gene expression was associated with proinflammatory cytokines and chemokines and their cognate receptors (r ≥ 0.447, p ≤ 0.030), but not with anti-inflammatory markers. CAV1 expression was correlated with CD163, indicating a prospective role for CAV1 in the adipose inflammatory microenvironment. Unlike wild-type animals, mice lacking TNF-α exhibited reduced levels of CAV1 mRNA/proteins, which were elevated by administering exogenous TNF-α. Mechanistically, TNF-α induces CAV1 gene transcription by mediating NF-κB binding to its two regulatory elements located in the CAV1 proximal regulatory region. The interplay between CAV1 and the TNF-α signaling pathway is intriguing and has potential as a target for therapeutic interventions in obesity and metabolic syndromes.


Subject(s)
Caveolin 1 , NF-kappa B , Obesity , Tumor Necrosis Factor-alpha , Animals , Humans , Mice , Adipose Tissue/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Obesity/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
5.
Cells ; 11(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36497195

ABSTRACT

Caveolin-1 (CAV1) is implicated in the pathophysiology of diabetes and obesity. Previously, we demonstrated an association between the CAV1 rs1997623 C > A variant and metabolic syndrome (MetS). Here, we decipher the functional role of rs1997623 in CAV1 gene regulation. A cohort of 38 patients participated in this study. The quantitative MetS scores (siMS) of the participants were computed. CAV1 transcript and protein expression were tested in subcutaneous adipose tissue using RT-PCR and immunohistochemistry. Chromatin immunoprecipitation assays were performed using primary preadipocytes isolated from individuals with different CAV1 rs1997623 genotypes (AA, AC, and CC). The regulatory region flanking the variant was cloned into a luciferase reporter plasmid and expressed in human preadipocytes. Additional knockdown and overexpression assays were carried out. We show a significant correlation between siMS and CAV1 transcript levels and protein levels in human adipose tissue collected from an Arab cohort. We found that the CAV1 rs1997623 A allele generates a transcriptionally active locus and a new transcription factor binding site for early B-cell factor 1 (EBF1), which enhanced CAV1 expression. Our in vivo and in vitro combined study implicates, for the first time, EBF1 in regulating CAV1 expression in individuals harboring the rs1997623 C > A variant.


Subject(s)
Caveolin 1 , Metabolic Syndrome , Polymorphism, Single Nucleotide , Trans-Activators , Humans , Adipose Tissue/metabolism , Alleles , Binding Sites , Caveolin 1/genetics , Genotype , Metabolic Syndrome/metabolism , Trans-Activators/metabolism
6.
Cells ; 11(24)2022 12 11.
Article in English | MEDLINE | ID: mdl-36552771

ABSTRACT

Steroid receptor RNA activator gene (SRA1) emerges as a player in pathophysiological responses of adipose tissue (AT) in metabolic disorders such as obesity and type 2 diabetes (T2D). We previously showed association of the AT SRA1 expression with inflammatory cytokines/chemokines involved in metabolic derangement. However, the relationship between altered adipose expression of SRA1 and the innate immune Toll-like receptors (TLRs) as players in nutrient sensing and metabolic inflammation as well as their downstream signaling partners, including interferon regulatory factors (IRFs), remains elusive. Herein, we investigated the association of AT SRA1 expression with TLRs, IRFs, and other TLR-downstream signaling mediators in a cohort of 108 individuals, classified based on their body mass index (BMI) as persons with normal-weight (N = 12), overweight (N = 32), and obesity (N = 64), including 55 with and 53 without T2D. The gene expression of SRA1, TLRs-2,3,4,7,8,9,10 and their downstream signaling mediators including IRFs-3,4,5, myeloid differentiation factor 88 (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK1), and nuclear factor-κB (NF-κB) were determined using qRT-PCR and SRA1 protein expression was determined by immunohistochemistry. AT SRA1 transcripts' expression was significantly correlated with TLRs-3,4,7, MyD88, NF-κB, and IRF5 expression in individuals with T2D, while it associated with TLR9 and TRAF6 expression in all individuals, with/without T2D. SRA1 expression associated with TLR2, IRAK1, and IRF3 expression only in individuals with obesity, regardless of diabetes status. Furthermore, TLR3/TLR7/IRAK1 and TLR3/TLR9 were identified as independent predictors of AT SRA1 expression in individuals with obesity and T2D, respectively. Overall, our data demonstrate a direct association between the AT SRA1 expression and the TLRs together with their downstream signaling partners and IRFs in individuals with obesity and/or T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Toll-Like Receptor 3 , Humans , Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Interferon Regulatory Factors/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Obesity/genetics , Obesity/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 9/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
7.
Cells ; 11(19)2022 09 29.
Article in English | MEDLINE | ID: mdl-36231033

ABSTRACT

Chronic low-grade inflammation induced by obesity is a central risk factor for the development of metabolic syndrome. High low-density lipoprotein cholesterol (LDL-c) induces inflammation, which is a common denominator in metabolic syndrome. IL-23 plays a significant role in the pathogenesis of meta-inflammatory diseases; however, its relationship with LDL-c remains elusive. In this cross-sectional study, we determined whether the adipose tissue IL-23 expression was associated with other inflammatory mediators in people with increased plasma LDL-c concentrations. Subcutaneous adipose tissue biopsies were collected from 60 people, sub-divided into two groups based on their plasma LDL-c concentrations (<2.9 and ≥2.9 mmol/L). Adipose expression of IL-23 and inflammatory markers were determined using real-time qRT-PCR; plasma concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c) and LDL-c were determined using the standard method; and adiponectin levels were measured by enzyme-linked immunosorbent assay (ELISA). Adipose IL-23 transcripts were found to be increased in people with high LDL-c, compared to low LDL-c group (H-LDL-c: 1.63 ± 0.10-Fold; L-LDL-c: 1.27 ± 0.09-Fold; p < 0.01); IL-23 correlated positively with LDL-c (r = 0.471, p < 0.0001). Immunochemistry analysis showed that AT IL-23 protein expression was also elevated in the people with H-LDL-c. IL-23 expression in the high LDL-c group was associated with multiple adipose inflammatory biomarkers (p ≤ 0.05), including macrophage markers (CD11c, CD68, CD86, CD127), TLRs (TLR8, TLR10), IRF3, pro-inflammatory cytokines (TNF-α, IL-12, IL-18), and chemokines (CXCL8, CCL3, CCL5, CCL15, CCL20). Notably, in this cohort, IL-23 expression correlated inversely with plasma adiponectin. In conclusion, adipose IL-23 may be an inflammatory biomarker for disease progression in people with high LDL-c.


Subject(s)
Hyperlipidemias , Interleukin-23 Subunit p19/metabolism , Metabolic Syndrome , Adiponectin/metabolism , Adipose Tissue/metabolism , Biomarkers/metabolism , Chemokines/metabolism , Cholesterol/metabolism , Cholesterol, HDL , Cholesterol, LDL/metabolism , Cross-Sectional Studies , Cytokines/metabolism , Humans , Hyperlipidemias/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Interleukin-12/metabolism , Interleukin-18/metabolism , Interleukin-23/metabolism , Metabolic Syndrome/metabolism , Toll-Like Receptor 8/metabolism , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Cells ; 11(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36139454

ABSTRACT

In obesity, macrophage activation and infiltration in adipose tissue (AT) underlie chronic low-grade inflammation-induced insulin resistance. Although dectin-1 is primarily a pathogen recognition receptor and innate immune response modulator, its role in metabolic syndromes remains to be clarified. This study aimed to investigate the dectin-1 gene expression in subcutaneous AT in the context of obesity and associated inflammatory markers. Subcutaneous AT biopsies were collected from 59 nondiabetic (lean/overweight/obese) individuals. AT gene expression levels of dectin-1 and inflammatory markers were determined via real-time reverse transcriptase-quantitative polymerase chain reaction. Dectin-1 protein expression was assessed using immunohistochemistry. Plasma lipid profiles were measured by ELISA. AT dectin-1 transcripts and proteins were significantly elevated in obese as compared to lean individuals. AT dectin-1 transcripts correlated positively with body mass index and fat percentage (r ≥ 0.340, p ≤ 0.017). AT dectin-1 RNA levels correlated positively with clinical parameters, including plasma C-reactive protein and CCL5/RANTES, but negatively with that of adiponectin. The expression of dectin-1 transcripts was associated with that of various proinflammatory cytokines, chemokines, and their cognate receptors (r ≥ 0.300, p ≤ 0.05), but not with anti-inflammatory markers. Dectin-1 and members of the TLR signaling cascade were found to be significantly associated, suggesting an interplay between the two pathways. Dectin-1 expression was correlated with monocyte/macrophage markers, including CD16, CD68, CD86, and CD163, suggesting its monocytes/macrophage association in an adipose inflammatory microenvironment. Dectin-1 expression was independently predicted by CCR5, CCL20, TLR2, and MyD88. In conclusion, dectin-1 may be regarded as an AT biomarker of metabolic inflammation in obesity.


Subject(s)
Adiponectin , Chemokine CCL5 , Lectins, C-Type , Adiponectin/metabolism , Adipose Tissue/metabolism , Biomarkers/metabolism , C-Reactive Protein/metabolism , Chemokine CCL5/metabolism , Cytokines/metabolism , Humans , Inflammation/pathology , Lectins, C-Type/metabolism , Lipids , Myeloid Differentiation Factor 88/metabolism , Obesity/metabolism , RNA/metabolism , RNA-Directed DNA Polymerase/metabolism , Toll-Like Receptor 2/metabolism
9.
Sci Transl Med ; 14(637): eabh3831, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35320000

ABSTRACT

Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPKα and AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an approach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Insulin Resistance/physiology , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Mice , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/genetics , Obesity/complications , Obesity/metabolism
10.
Cells ; 10(11)2021 11 19.
Article in English | MEDLINE | ID: mdl-34831450

ABSTRACT

IL-6 was found to be overexpressed in the adipose tissue of obese individuals, which may cause insulin resistance. However, the regulation of IL-6 in adipocytes in obesity setting remains to be explored. Since IL-1ß and TNFα are increased in obese adipose tissue and promote inflammation, we investigated whether cooperation between IL-1ß and TNFα influences the production of IL-6. Our data show that IL-1ß and TNFα cooperatively enhance IL-6 expression in 3T3L-1 adipocytes. Similar results were seen in human adipocytes isolated from subcutaneous and visceral fat. Although adipocytes isolated from lean and obese adipose tissues showed similar responses for production of IL-6 when incubated with IL-1ß/TNFα, secretion of IL-6 was higher in adipocytes from obese tissue. TNFα treatment enhanced CREB binding at CRE locus, which was further enhanced with IL-1ß, and was associated with elevated histone acetylation at CRE locus. On the other hand, IL-1ß treatments mediated C/EBPß binding to NF-IL-6 consensus, but not sufficiently to mediate significant histone acetylation. Interestingly, treatment with both stimulatory factors amplifies CREB binding and H3K14 acetylation. Furthermore, histone acetylation inhibition by anacardic acid or curcumin reduces IL-6 production. Notably, inhibition of histone deacetylase (HDAC) activity by trichostatin A (TSA) resulted in the further elevation of IL-6 expression in response to combined treatment of adipocytes with IL-1ß and TNFα. In conclusion, our results show that there is an additive interaction between IL-1ß and TNFα that depends on CREB binding and H3K14 acetylation, and leads to the elevation of IL-6 expression in adipocytes, providing interesting pathophysiological connection among IL-1ß, TNFα, and IL-6 in settings such as obesity.


Subject(s)
Adipocytes/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation , Histones/metabolism , Interleukin-1beta/pharmacology , Interleukin-6/genetics , Lysine/metabolism , Tumor Necrosis Factor-alpha/pharmacology , 3T3-L1 Cells , Acetylation , Adipocytes/drug effects , Animals , Base Sequence , Gene Expression Regulation/drug effects , Humans , Hydroxamic Acids/pharmacology , Interleukin-6/metabolism , Mice , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Signal Transduction/drug effects
11.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34638857

ABSTRACT

IL-8/MCP-1 act as neutrophil/monocyte chemoattractants, respectively. Oxidative stress emerges as a key player in the pathophysiology of obesity. However, it remains unclear whether the TNF-α/oxidative stress interplay can trigger IL-8/MCP-1 expression and, if so, by which mechanism(s). IL-8/MCP-1 adipose expression was detected in lean, overweight, and obese individuals, 15 each, using immunohistochemistry. To detect the role of reactive oxygen species (ROS)/TNF-α synergy as a chemokine driver, THP-1 cells were stimulated with TNF-α, with/without H2O2 or hypoxia. Target gene expression was measured by qRT-PCR, proteins by flow cytometry/confocal microscopy, ROS by DCFH-DA assay, and signaling pathways by immunoblotting. IL-8/MCP-1 adipose expression was significantly higher in obese/overweight. Furthermore, IL-8/MCP-1 mRNA/protein was amplified in monocytic cells following stimulation with TNF-α in the presence of H2O2 or hypoxia (p ˂ 0.0001). Synergistic chemokine upregulation was related to the ROS levels, while pre-treatments with NAC suppressed this chemokine elevation (p ≤ 0.01). The ROS/TNF-α crosstalk involved upregulation of CHOP, ERN1, HIF1A, and NF-κB/ERK-1,2 mediated signaling. In conclusion, IL-8/MCP-1 adipose expression is elevated in obesity. Mechanistically, ROS/TNF-α crosstalk may drive expression of these chemokines in monocytic cells by inducing ER stress, HIF1A stabilization, and signaling via NF-κB/ERK-1,2. NAC had inhibitory effect on oxidative stress-driven IL-8/MCP-1 expression, which may have therapeutic significance regarding meta-inflammation.


Subject(s)
Chemokine CCL2/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Hydrogen Peroxide/pharmacology , Interleukin-8/genetics , Monocytes/drug effects , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Adipose Tissue/metabolism , Adult , Aged , Aged, 80 and over , Chemokine CCL2/metabolism , Female , Gene Expression/drug effects , Humans , Interleukin-8/metabolism , Male , Middle Aged , Monocytes/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , THP-1 Cells
12.
Cells ; 10(10)2021 09 30.
Article in English | MEDLINE | ID: mdl-34685582

ABSTRACT

Steroid receptor RNA activator 1 (SRA1) is involved in pathophysiological responses of adipose tissue (AT) in obesity. In vitro and animal studies have elucidated its role in meta-inflammation. Since SRA1 AT expression in obesity/type 2 diabetes (T2D) and the relationship with immune-metabolic signatures remains unclear, we assessed AT SRA1 expression and its association with immune-metabolic markers in individuals with obesity/T2D. For this, 55 non-diabetic and 53 T2D individuals classified as normal weight (NW; lean), overweight, and obese were recruited and fasting blood and subcutaneous fat biopsy samples were collected. Plasma metabolic markers were assessed using commercial kits and AT expression of SRA1 and selected immune markers using RT-qPCR. SRA1 expression was significantly higher in non-diabetic obese compared with NW individuals. SRA1 expression associated with BMI, PBF, serum insulin, and HOMA-IR in the total study population and people without diabetes. SRA1 associated with waist circumference in people without diabetes and NW participants, whereas it associated inversely with HbA1c in overweight participants. In most study subgroups AT SRA1 expression associated directly with CXCL9, CXCL10, CXCL11, TNF-α, TGF-ß, IL2RA, and IL18, but inversely with CCL19 and CCR2. TGF-ß/IL18 independently predicted the SRA1 expression in people without diabetes and in the total study population, while TNF-α/IL-2RA predicted SRA1 only in people with diabetes. TNF-α also predicted SRA1 in both NW and obese people regardless of the diabetes status. In conclusion, AT SRA1 expression is elevated in people with obesity which associates with typical immunometabolic markers of obesity/T2D, implying that SRA1 may have potential as a biomarker of metabolic derangements.


Subject(s)
Carrier Proteins/metabolism , Inflammation/metabolism , Insulin Resistance/physiology , Obesity/metabolism , Adipose Tissue/metabolism , Biomarkers/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Inflammation/pathology , Male , Middle Aged
13.
Int J Mol Sci ; 22(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299302

ABSTRACT

Short-chain fatty acid (SCFA) acetate, a byproduct of dietary fiber metabolism by gut bacteria, has multiple immunomodulatory functions. The anti-inflammatory role of acetate is well documented; however, its effect on monocyte chemoattractant protein-1 (MCP-1) production is unknown. Similarly, the comparative effect of SCFA on MCP-1 expression in monocytes and macrophages remains unclear. We investigated whether acetate modulates TNFα-mediated MCP-1/CCL2 production in monocytes/macrophages and, if so, by which mechanism(s). Monocytic cells were exposed to acetate with/without TNFα for 24 h, and MCP-1 expression was measured. Monocytes treated with acetate in combination with TNFα resulted in significantly greater MCP-1 production compared to TNFα treatment alone, indicating a synergistic effect. On the contrary, treatment with acetate in combination with TNFα suppressed MCP-1 production in macrophages. The synergistic upregulation of MCP-1 was mediated through the activation of long-chain fatty acyl-CoA synthetase 1 (ACSL1). However, the inhibition of other bioactive lipid enzymes [carnitine palmitoyltransferase I (CPT I) or serine palmitoyltransferase (SPT)] did not affect this synergy. Moreover, MCP-1 expression was significantly reduced by the inhibition of p38 MAPK, ERK1/2, and NF-κB signaling. The inhibition of ACSL1 attenuated the acetate/TNFα-mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB. Increased NF-κB/AP-1 activity, resulting from acetate/TNFα co-stimulation, was decreased by ACSL1 inhibition. In conclusion, this study demonstrates the proinflammatory effects of acetate on TNF-α-mediated MCP-1 production via the ACSL1/MAPK/NF-κB axis in monocytic cells, while a paradoxical effect was observed in THP-1-derived macrophages.


Subject(s)
Acetates/pharmacology , Chemokine CCL2/biosynthesis , Fatty Acids, Volatile/pharmacology , Monocytes/drug effects , Monocytes/metabolism , Acetates/administration & dosage , Chemokine CCL2/genetics , Coenzyme A Ligases/antagonists & inhibitors , Coenzyme A Ligases/metabolism , Drug Synergism , Enzyme Inhibitors/pharmacology , Fatty Acids, Volatile/administration & dosage , Humans , MAP Kinase Signaling System , Models, Biological , Monocytes/immunology , NF-kappa B/metabolism , Obesity/etiology , Obesity/metabolism , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , THP-1 Cells , Triazenes/pharmacology , Tumor Necrosis Factor-alpha/administration & dosage , Tumor Necrosis Factor-alpha/pharmacology
14.
Sci Rep ; 11(1): 8259, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859296

ABSTRACT

Ceramide kinase (CERK) phosphorylates ceramide to produce ceramide-1-phosphate (C1P), which is involved in the development of metabolic inflammation. TNF-α modulates inflammatory responses in monocytes associated with various inflammatory disorders; however, the underlying mechanisms remain not fully understood. Here, we investigated the role of CERK in TNF-α-induced inflammatory responses in monocytes. Our results show that disruption of CERK activity in monocytes, either by chemical inhibitor NVP-231 or by small interfering RNA (siRNA), results in the defective expression of inflammatory markers including CD11c, CD11b and HLA-DR in response to TNF-α. Our data show that TNF-α upregulates ceramide phosphorylation. Inhibition of CERK in monocytes significantly reduced the secretion of IL-1ß and MCP-1. Similar results were observed in CERK-downregulated cells. TNF-α-induced phosphorylation of JNK, p38 and NF-κB was reduced by inhibition of CERK. Additionally, NF-κB/AP-1 activity was suppressed by the inhibition of CERK. Clinically, obese individuals had higher levels of CERK expression in PBMCs compared to lean individuals, which correlated with their TNF-α levels. Taken together, these results suggest that CERK plays a key role in regulating inflammatory responses in human monocytes during TNF-α stimulation. CERK may be a relevant target for developing novel therapies for chronic inflammatory diseases.


Subject(s)
Inflammation/immunology , Monocytes/immunology , Phosphotransferases (Alcohol Group Acceptor)/physiology , Tumor Necrosis Factor-alpha/adverse effects , Ceramides/metabolism , Humans , Inflammation/therapy , Molecular Targeted Therapy , Monocytes/enzymology , Phosphorylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/metabolism , THP-1 Cells
15.
Sci Rep ; 10(1): 16364, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004937

ABSTRACT

Adipose tissue (AT) associated cytokines are involved in the development of chronic low-grade inflammation in obese individuals. IL-2, a pleiotropic cytokine, contributes to immune alterations during inflammation. However, the interaction between AT-IL-2 and other inflammatory biomolecules in obesity remains elusive. We investigated whether AT-IL-2 expression was associated with markers of inflammation and insulin resistance in overweight/obese individuals. Subcutaneous fat tissues were collected from 56 individuals (lean/overweight/obese) for RNA extraction. IL-2 and inflammatory mediators were quantified by qRT-PCR and immunohistochemistry. CRP was measured by ELISA. AT-IL-2 expression was higher in obese compared with lean individuals (P < 0.021) and correlated with BMI. IL-2 correlated with interleukins IL-8 and IL-12A (r = 0.333-0.481; p = 0.0001-0.029); as well as with chemokines and their receptors including CCL5, CCL19, CCR2 and CCR5 (r = 0.538-0.677; p < 0.0001). Moreover, IL-2 correlated with toll-like receptors (TLR2, TLR8, TLR10), interferon regulatory factor 5 (IRF5) and cluster of differentiation CD11c (r = 0.282-0.357; p < 0.039). Notably, IL-2 was associated positively with fasting blood glucose (FBG), HbA1c, TGL and CRP (r ≥ 0.423;P ≤ 0.007). In multiple regression analysis, IL-2 is an independent predictor of IL-8, IL-12A, TLR10, TGL and HbA1c. Overall, our data demonstrate that increased expression of the AT-IL-2, in obesity, may represent a novel biomarker for progression of metabolic inflammation and insulin-resistance.


Subject(s)
Insulin Resistance/physiology , Interleukin-2/metabolism , Obesity/metabolism , Subcutaneous Fat/metabolism , Adult , Biomarkers/metabolism , Body Mass Index , Cytokines/metabolism , Humans , Inflammation/metabolism , Inflammation Mediators/metabolism , Middle Aged
16.
Sci Rep ; 10(1): 16802, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033337

ABSTRACT

Obesity is associated with elevated levels of TNF-α and proinflammatory CD11c monocytes/macrophages. TNF-α mediated dysregulation in the plasticity of monocytes/macrophages is concomitant with pathogenesis of several inflammatory diseases, including metabolic syndrome, but the underlying mechanisms are incompletely understood. Since neutral sphingomyelinase-2 (nSMase2: SMPD3) is a key enzyme for ceramide production involved in inflammation, we investigated whether nSMase2 contributed to the inflammatory changes in the monocytes/macrophages induced by TNF-α. In this study, we demonstrate that the disruption of nSMase activity in monocytes/macrophages either by chemical inhibitor GW4869 or small interfering RNA (siRNA) against SMPD3 results in defects in the TNF-α mediated expression of CD11c. Furthermore, blockage of nSMase in monocytes/macrophages inhibited the secretion of inflammatory mediators IL-1ß and MCP-1. In contrast, inhibition of acid SMase (aSMase) activity did not attenuate CD11c expression or secretion of IL-1ß and MCP-1. TNF-α-induced phosphorylation of JNK, p38 and NF-κB was also attenuated by the inhibition of nSMase2. Moreover, NF-kB/AP-1 activity was blocked by the inhibition of nSMase2. SMPD3 was elevated in PBMCs from obese individuals and positively corelated with TNF-α gene expression. These findings indicate that nSMase2 acts, at least in part, as a master switch in the TNF-α mediated inflammatory responses in monocytes/macrophages.


Subject(s)
Macrophages/drug effects , Monocytes/drug effects , Sphingomyelin Phosphodiesterase/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Adult , Blotting, Western , Flow Cytometry , Humans , Inflammation , Macrophages/enzymology , Macrophages/pathology , Middle Aged , Monocytes/enzymology , Monocytes/pathology , Real-Time Polymerase Chain Reaction
17.
Molecules ; 25(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066575

ABSTRACT

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a monomeric glycoprotein that has been implicated in the tumor growth and progression of different types of cancer. GM-CSF is produced by various non-immune cells including MDA-MB-231 in response to various stimuli. However, the role of lipopolysaccharide (LPS) in the regulation of GM-CSF in MDA-MB-231 breast cancer cells so far remains unclear. Herein, we asked whether LPS could induce GM-CSF production in MDA-MB-231 cells, and if so, which signaling pathway was involved. MDA-MB-231 cells were treated with LPS or tumor necrosis factor alpha (TNF-α; positive control), and GM-CSF expression levels were determined by qRT-PCR, ELISA, and confocal microscopy. Phosphorylation of the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-kB) signaling proteins were evaluated by flow cytometry. Our results show that LPS induces GM-CSF expression at both mRNA and protein levels in MDA-MBA-231 cells. Inhibition of acyl-CoA synthetase 1 (ACSL1) activity in the cells with triacsin C significantly reduces the secretion of GM-CSF. Furthermore, the inhibition of ACSL1 activity significantly blocks the LPS-mediated phosphorylation of p38 MAPK, MEK1/2, extracellular signal-regulated kinase (ERK)1/2, c-Jun NH2-terminal kinase (JNK), and nuclear factor-κB (NF-kB) in the cells. These findings provide the first evidence that LPS induces ACSL1-dependent GM-CSF gene expression in MDA-MB-231 breast cancer cells, which requires the activation of p38 MAPK, MEK1/2, ERK1/2, JNK, and NF-kB.


Subject(s)
Breast Neoplasms/drug therapy , Coenzyme A Ligases/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Lipopolysaccharides/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , p38 Mitogen-Activated Protein Kinases
18.
Cells ; 9(8)2020 08 12.
Article in English | MEDLINE | ID: mdl-32806763

ABSTRACT

Repetitive intermittent hyperglycemia (RIH) is an independent risk factor for complications associated with type-2 diabetes (T2D). Glucose fluctuations commonly occur in T2D patients with poor glycemic control or following intensive therapy. Reducing blood glucose as well as glucose fluctuations is critical to the control of T2D and its macro-/microvascular complications. The interferon regulatory factor (IRF)-5 located downstream of the nutrient sensor toll-like receptor (TLR)-4, is emerging as a key metabolic regulator. It remains unclear how glucose fluctuations may alter the IRF5/TLR4 expression and inflammatory responses in monocytes/macrophages. To investigate this, first, we determined IRF5 gene expression by real-time qRT-PCR in the white adipose tissue samples from 39 T2D and 48 nondiabetic individuals. Next, we cultured THP-1 macrophages in hypo- and hyperglycemic conditions and compared, at the protein and transcription levels, the expressions of IRF5, TLR4, and M1/M2 polarization profile and inflammatory markers against control (normoglycemia). Protein expression was assessed using flow cytometry, ELISA, Western blotting, and/or confocal microscopy. IRF5 silencing was achieved by small interfering RNA (siRNA) transfection. The data show that adipose IRF5 gene expression was higher in T2D than nondiabetic counterparts (P = 0.006), which correlated with glycated hemoglobin (HbA1c) (r = 0.47/P < 0.001), homeostatic model assessment of insulin resistance (HOMA-IR) (r = 0.23/P = 0.03), tumor necrosis factor (TNF)-α (r = 0.56/P < 0.0001), interleukin (IL)-1ß (r = 0.40/P = 0.0009), and C-C motif chemokine receptor (CCR)-2 (r = 0.49/P < 0.001) expression. IRF5 expression in macrophages was induced/upregulated (P < 0.05) by hypoglycemia (3 mM/L), persistent hyperglycemia (15 mM/L-25 mM/L), and RIH/glucose fluctuations (3-15 mM/L) as compared to normoglycemia (5 mM/L). RIH/glucose fluctuations also induced M1 polarization and an inflammatory profile (CD11c, IL-1ß, TNF-α, IL-6, and monocyte chemoattractant protein (MCP)-1) in macrophages. RIH/glucose fluctuations also drove the expression of matrix metalloproteinase (MMP)-9 (P < 0.001), which is a known marker for cardiovascular complication in T2D patients. Notably, all these changes were counteracted by IRF5 silencing in macrophages. In conclusion, RIH/glucose fluctuations promote the M1 polarization and inflammatory responses in macrophages via the mechanism involving TLR4-IRF5 pathway, which may have significance for metabolic inflammation.


Subject(s)
Cell Polarity/genetics , Diabetes Mellitus, Type 2/blood , Hyperglycemia/metabolism , Interferon Regulatory Factors/metabolism , Macrophages/metabolism , Signal Transduction/genetics , Toll-Like Receptor 4/metabolism , Adipose Tissue, White/metabolism , Adult , Cohort Studies , Diabetes Mellitus, Type 2/genetics , Female , Gene Expression , Humans , Inflammation/metabolism , Interferon Regulatory Factors/genetics , Male , Middle Aged , RNA, Small Interfering/genetics , THP-1 Cells , Transfection
19.
Cells ; 9(8)2020 07 29.
Article in English | MEDLINE | ID: mdl-32751118

ABSTRACT

Metabolic inflammation is associated with increased expression of saturated free fatty acids, proinflammatory cytokines, chemokines, and adipose oxidative stress. Macrophage inflammatory protein (MIP)-1α recruits the inflammatory cells such as monocytes, macrophages, and neutrophils in the adipose tissue; however, the mechanisms promoting the MIP-1α expression remain unclear. We hypothesized that MIP-1α co-induced by palmitate and tumor necrosis factor (TNF)-α in monocytic cells/macrophages could be further enhanced in the presence of reactive oxygen species (ROS)-mediated oxidative stress. To investigate this, THP-1 monocytic cells and primary human macrophages were co-stimulated with palmitate and TNF-α and mRNA and protein levels of MIP-1α were measured by using quantitative reverse transcription, polymerase chain reaction (qRT-PCR) and commercial enzyme-linked immunosorbent assays (ELISA), respectively. The cognate receptor of palmitate, toll-like receptor (TLR)-4, was blunted by genetic ablation, neutralization, and chemical inhibition. The involvement of TLR4-downstream pathways, interferon regulatory factor (IRF)-3 or myeloid differentiation (MyD)-88 factor, was determined using IRF3-siRNA or MyD88-deficient cells. Oxidative stress was induced in cells by hydrogen peroxide (H2O2) treatment and ROS induction was measured by dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. The data show that MIP-1α gene/protein expression was upregulated in cells co-stimulated with palmitate/TNF-α compared to those stimulated with either palmitate or TNF-α (P < 0.05). Further, TLR4-IRF3 pathway was implicated in the cooperative induction of MIP-1α in THP-1 cells, and this cooperativity between palmitate and TNF-α was clathrin-dependent and also required signaling through c-Jun and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Notably, ROS itself induced MIP-1α and could further promote MIP-1α secretion together with palmitate and TNF-α. In conclusion, palmitate and TNF-α co-induce MIP-1α in human monocytic cells via the TLR4-IRF3 pathway and signaling involving c-Jun/NF-κB. Importantly, oxidative stress leads to ROS-driven MIP-1α amplification, which may have significance for metabolic inflammation.


Subject(s)
Chemokine CCL3/metabolism , Interferon Regulatory Factor-3/metabolism , Monocytes/drug effects , Monocytes/metabolism , Oxidative Stress/drug effects , Palmitates/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Adult , Blood Donors , Chemokine CCL3/genetics , Enzyme-Linked Immunosorbent Assay , Humans , Hydrogen Peroxide/pharmacology , Interferon Regulatory Factor-3/genetics , Macrophages/metabolism , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Recombinant Proteins/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , THP-1 Cells , Toll-Like Receptor 4/genetics , Transfection
20.
Cells ; 9(5)2020 05 11.
Article in English | MEDLINE | ID: mdl-32403230

ABSTRACT

Obesity is a well-known risk factor for insulin resistance syndrome (IRS). Nevertheless, limited data are available regarding the effects of physical activity (PA) intensity on the ability to modulate IRS. The study aim was to investigate the beneficial effects of the longer duration of light PA vs. a single bout of the acute moderate or vigorous PA for improvement in IRS indicators. Sixty metabolically healthy obese (MHO) participants, 30 males and 30 females, with body mass index (BMI) of ≥30 were enrolled in this study. PA levels were measured using an accelerometer, and the expression of monocytic surface markers was analyzed using flow cytometry. Plasma cytokines' secretion was determined by enzyme-linked immunosorbent assay (ELISA). Univariate regression analysis evaluated the actigraphy-assessed PA measures, inflammatory cytokines, and insulin resistance. The longer duration of PA was found to be associated with the homeostatic model assessment of insulin resistance (HOMA-IR), a lower lipid profile, and the expression of inflammatory cytokines by monocytes. Even though, higher intensities of PA were found to be associated with lower body fat percentage, only the light intensity PA was found to be beneficial as it associated with the improved insulin sensitivity and lower expression of inflammatory markers. In conclusion, maintaining the longer duration of low-intensity PA throughout the day could be more beneficial for reducing inflammation and improving insulin resistance. This study supports a more feasible approach model to gain beneficial lifestyle changes for the prevention of IRS in metabolically healthy adults with obesity.


Subject(s)
Exercise , Insulin Resistance , Obesity/metabolism , Obesity/pathology , Adult , Antigens, CD/metabolism , Biomarkers/blood , Cytokines/blood , Female , Humans , Male , Monocytes/metabolism , Obesity/blood , Regression Analysis , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...