Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 384, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724935

ABSTRACT

BACKGROUND: Semi-dwarfing alleles are used widely in cereals to confer improved lodging resistance and assimilate partitioning. The most widely deployed semi-dwarfing alleles in rice and barley encode the gibberellin (GA)-biosynthetic enzyme GA 20-OXIDASE2 (GA20OX2). The hexaploid wheat genome carries three homoeologous copies of GA20OX2, and because of functional redundancy, loss-of-function alleles of a single homoeologue would not be selected in wheat breeding programmes. Instead, approximately 70% of wheat cultivars carry gain-of-function mutations in REDUCED HEIGHT 1 (RHT1) genes that encode negative growth regulators and are degraded in response to GA. Semi-dwarf Rht-B1b or Rht-D1b alleles encode proteins that are insensitive to GA-mediated degradation. However, because RHT1 is expressed ubiquitously these alleles have pleiotropic effects that confer undesirable traits in some environments. RESULTS: We have applied reverse genetics to combine loss-of-function alleles in all three homoeologues of wheat GA20OX2 and its paralogue GA20OX1 and evaluated their performance in three years of field trials. ga20ox1 mutants exhibited a mild height reduction (approximately 3%) suggesting GA20OX1 plays a minor role in stem elongation in wheat. ga20ox2 mutants have reduced GA1 content and are 12-32% shorter than their wild-type segregants, comparable to the effect of the Rht-D1b 'Green Revolution' allele. The ga20ox2 mutants showed no significant negative effects on yield components in the spring wheat variety 'Cadenza'. CONCLUSIONS: Our study demonstrates that chemical mutagenesis can expand genetic variation in polyploid crops to uncover novel alleles despite the difficulty in identifying appropriate mutations for some target genes and the negative effects of background mutations. Field experiments demonstrate that mutations in GA20OX2 reduce height in wheat, but it will be necessary to evaluate the effect of these alleles in different genetic backgrounds and environments to determine their value in wheat breeding as alternative semi-dwarfing alleles.


Subject(s)
Phenotype , Plant Proteins , Triticum , Triticum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation , Oryza/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Alleles , Gibberellins/metabolism , Genes, Plant
2.
J Exp Bot ; 75(7): 1934-1947, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38066689

ABSTRACT

Formation of functional pollen and successful fertilization rely on the spatial and temporal regulation of anther and pollen development. This process responds to environmental cues to maintain optimal fertility despite climatic changes. Arabidopsis transcription factors basic helix-loop-helix (bHLH) 10, 89, and 91 were previously thought to be functionally redundant in their control of male reproductive development, however here we show that they play distinct roles in the integration of light signals to maintain pollen development under different environmental conditions. Combinations of the double and triple bHLH10,89,91 mutants were analysed under normal (200 µmol m-2 s-1) and low (50 µmol m-2 s-1) light conditions to determine the impact on fertility. Transcriptomic analysis of a new conditionally sterile bhlh89,91 double mutant shows differential regulation of genes related to sexual reproduction, hormone signal transduction, and lipid storage and metabolism under low light. Here we have shown that bHLH89 and bHLH91 play a role in regulating fertility in response to light, suggesting that they function in mitigating environmental variation to ensure fertility is maintained under environmental stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Fertility/genetics , Reproduction , Gene Expression Regulation, Plant , Flowers
3.
J Exp Bot ; 74(6): 1890-1910, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36626359

ABSTRACT

Strigolactones (SLs) are a class of phytohormones regulating branching/tillering, and their biosynthesis has been associated with nutritional signals and plant adaptation to nutrient-limiting conditions. The enzymes in the SL biosynthetic pathway downstream of carlactone are of interest as they are responsible for structural diversity in SLs, particularly cytochrome P450 CYP711A subfamily members, such as MORE AXILLARY GROWTH1 (MAX1) in Arabidopsis. We identified 13 MAX1 homologues in wheat, clustering in four clades and five homoeologous subgroups. The utilization of RNA-sequencing data revealed a distinct expression pattern of MAX1 homologues in above- and below-ground tissues, providing insights into the distinct roles of MAX1 homologues in wheat. In addition, a transcriptional analysis showed that SL biosynthetic genes were systematically regulated by nitrogen supply. Nitrogen limitation led to larger transcriptional changes in the basal nodes than phosphorus limitation, which was consistent with the observed tillering suppression, as wheat showed higher sensitivity to nitrogen. The opposite was observed in roots, with phosphorus limitation leading to stronger induction of most SL biosynthetic genes compared with nitrogen limitation. The observed tissue-specific regulation of SL biosynthetic genes in response to nutritional signals is likely to reflect the dual role of SLs as rhizosphere signals and branching inhibitors.


Subject(s)
Arabidopsis , Triticum , Triticum/genetics , Triticum/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Lactones/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Phosphorus/metabolism , Gene Expression Regulation, Plant
4.
BMC Plant Biol ; 22(1): 284, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35676624

ABSTRACT

BACKGROUND: Bread wheat (Triticum aestivum) is a major source of nutrition globally, but yields can be seriously compromised by water limitation. Redistribution of growth between shoots and roots is a common response to drought, promoting plant survival, but reducing yield. Gibberellins (GAs) are necessary for shoot and root elongation, but roots maintain growth at lower GA concentrations compared with shoots, making GA a suitable hormone for mediating this growth redistribution. In this study, the effect of progressive drought on GA content was determined in the base of the 4th leaf and root tips of wheat seedlings, containing the growing regions, as well as in the remaining leaf and root tissues. In addition, the contents of other selected hormones known to be involved in stress responses were determined. Transcriptome analysis was performed on equivalent tissues and drought-associated differential expression was determined for hormone-related genes. RESULTS: After 5 days of applying progressive drought to 10-day old seedlings, the length of leaf 4 was reduced by 31% compared with watered seedlings and this was associated with significant decreases in the concentrations of bioactive GA1 and GA4 in the leaf base, as well as of their catabolites and precursors. Root length was unaffected by drought, while GA concentrations were slightly, but significantly higher in the tips of droughted roots compared with watered plants. Transcripts for the GA-inactivating gene TaGA2ox4 were elevated in the droughted leaf, while those for several GA-biosynthesis genes were reduced by drought, but mainly in the non-growing region. In response to drought the concentrations of abscisic acid, cis-zeatin and its riboside increased in all tissues, indole-acetic acid was unchanged, while trans-zeatin and riboside, jasmonate and salicylic acid concentrations were reduced. CONCLUSIONS: Reduced leaf elongation and maintained root growth in wheat seedlings subjected to progressive drought were associated with attenuated and increased GA content, respectively, in the growing regions. Despite increased TaGA2ox4 expression, lower GA levels in the leaf base of droughted plants were due to reduced biosynthesis rather than increased catabolism. In contrast to GA, the other hormones analysed responded to drought similarly in the leaf and roots, indicating organ-specific differential regulation of GA metabolism in response to drought.


Subject(s)
Seedlings , Triticum , Droughts , Gibberellins/metabolism , Hormones/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Seedlings/metabolism , Triticum/metabolism , Water/metabolism , Zeatin
5.
Curr Biol ; 31(22): 4971-4982.e4, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34614391

ABSTRACT

Nitrate, one of the main nitrogen (N) sources for crops, acts as a nutrient and key signaling molecule coordinating gene expression, metabolism, and various growth processes throughout the plant life cycle. It is widely accepted that nitrate-triggered developmental programs cooperate with hormone synthesis and transport to finely adapt plant architecture to N availability. Here, we report that nitrate, acting through its signaling pathway, promotes growth in Arabidopsis and wheat, in part by modulating the accumulation of gibberellin (GA)-regulated DELLA growth repressors. We show that nitrate reduces the abundance of DELLAs by increasing GA contents through activation of GA metabolism gene expression. Consistently, the growth restraint conferred by nitrate deficiency is partially rescued in global-DELLA mutant that lacks all DELLAs. At the cellular level, we show that nitrate enhances both cell proliferation and elongation in a DELLA-dependent and -independent manner, respectively. Our findings establish a connection between nitrate and GA signaling pathways that allow plants to adapt their growth to nitrate availability.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Gibberellins/metabolism , Nitrates , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plants/genetics , Signal Transduction/physiology
6.
Mol Plant ; 14(4): 679-687, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33422695

ABSTRACT

The unprecedented wheat yield increases during the Green Revolution were achieved through the introduction of the Reduced height (Rht)-B1b and Rht-D1b semi-dwarfing alleles. These Rht-1 alleles encode growth-repressing DELLA genes containing a stop codon within their open reading frame that confers gibberellin (GA)-insensitive semi-dwarfism. In this study, we successfully took the hurdle of detecting wild-type RHT-1 proteins in different wheat organs and confirmed their degradation in response to GAs. We further demonstrated that Rht-B1b and Rht-D1b produce N-terminal truncated proteins through translational reinitiation. Expression of these N-terminal truncated proteins in transgenic lines and in Rht-D1c, an allele containing multiple Rht-D1b copies, demonstrated their ability to cause strong dwarfism, resulting from their insensitivity to GA-mediated degradation. N-terminal truncated proteins were detected in spikes and nodes, but not in the aleurone layers. Since Rht-B1b and Rht-D1b alleles cause dwarfism but have wild-type dormancy, this finding suggests that tissue-specific differences in translational reinitiation may explain why the Rht-1 alleles reduce plant height without affecting dormancy. Taken together, our findings not only reveal the molecular mechanism underlying the Green Revolution but also demonstrate that translational reinitiation in the main open reading frame occurs in plants.


Subject(s)
Triticum/genetics , Triticum/metabolism , Alleles , Gibberellins/metabolism
7.
Soil Tillage Res ; 205: 104754, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33390631

ABSTRACT

Increased mechanical impedance induced by soil drying or compaction causes reduction in plant growth and crop yield. However, how mechanical impedance interacts with nutrient stress has been largely unknown. Here, we investigated the effect of mechanical impedance on the growth of wheat seedlings under contrasting phosphorus (P) supply in a sand culture system which allows the mechanical impedance to be independent of water and nutrient availability. Two wheat genotypes containing the Rht-B1a (tall) or Rht-B1c (gibberellin-insensitive dwarf) alleles in the Cadenza background were used and their shoot and root traits were determined. Mechanical impedance caused a significant reduction in plant growth under sufficient P supply, including reduced shoot and root biomass, leaf area and total root length. By contrast, under low P supply, mechanical impedance did not affect biomass, tiller number, leaf length, and nodal root number in both wheat genotypes, indicating that the magnitude of the growth restriction imposed by mechanical impedance was dependent on P supply. The interaction effect between mechanical impedance and P level was significant on most plant traits except for axial and lateral root length, suggesting an evident physical and nutritional interaction. Our findings provide valuable insights into the integrated effects of plants in response to both soil physical and nutritional stresses. Understanding the response patterns is critical for optimizing soil tillage and nutrient management in the field.

8.
New Phytol ; 229(3): 1521-1534, 2021 02.
Article in English | MEDLINE | ID: mdl-32989730

ABSTRACT

Root elongation depends on the action of the gibberellin (GA) growth hormones, which promote cell production in the root meristem and cell expansion in the elongation zone. Sites of GA biosynthesis in the roots of 7-d-old Arabidopsis thaliana seedlings were investigated using tissue-specific GA inactivation in wild-type (Col-0) or rescue of GA-deficient dwarf mutants. Tissue-specific GA depletion was achieved by ectopic expression of the GA-inactivating enzyme AtGA2ox2, which is specific for C19 -GAs, and AtGA2ox7, which acts on C20 -GA precursors. In addition, tissue-specific rescue of ga20ox triple and ga3ox double mutants was shown. Furthermore, GUS reporter lines for major GA20ox, GA3ox and GA2ox genes were used to observe their expression domains in the root. The effects of expressing these constructs on the lengths of the root apical meristem and cortical cells in the elongation zone confirmed that roots are autonomous for GA biosynthesis, which occurs in multiple tissues, with the endodermis a major site of synthesis. The results are consistent with the early stages of GA biosynthesis within the root occurring in the meristematic region and indicate that the penultimate step of GA biosynthesis, GA 20-oxidation, is required in both the meristem and elongation zone.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Gibberellins , Meristem/metabolism
9.
Plant Reprod ; 31(2): 171-191, 2018 06.
Article in English | MEDLINE | ID: mdl-29264708

ABSTRACT

KEY MESSAGE: Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning.


Subject(s)
Arabidopsis/growth & development , Flowers/growth & development , Gibberellins/metabolism , Meristem/growth & development , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/genetics , Gibberellins/pharmacology , Inflorescence/genetics , Inflorescence/growth & development , Linear Models , Meristem/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mutation , Phenotype , Plant Growth Regulators/pharmacology , Signal Transduction
11.
Genes Dev ; 30(2): 164-76, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26773002

ABSTRACT

The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Gene Expression Regulation, Plant/genetics , N-Acetylglucosaminyltransferases/metabolism , Signal Transduction/physiology , Acylation , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Gibberellins/metabolism , Mutation , N-Acetylglucosaminyltransferases/genetics , Protein Binding
12.
PLoS Genet ; 11(7): e1005337, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26134422

ABSTRACT

The ability of plants to provide a plastic response to environmental cues relies on the connectivity between signaling pathways. DELLA proteins act as hubs that relay environmental information to the multiple transcriptional circuits that control growth and development through physical interaction with transcription factors from different families. We have analyzed the presence of one DELLA protein at the Arabidopsis genome by chromatin immunoprecipitation coupled to large-scale sequencing and we find that it binds at the promoters of multiple genes. Enrichment analysis shows a strong preference for cis elements recognized by specific transcription factor families. In particular, we demonstrate that DELLA proteins are recruited by type-B ARABIDOPSIS RESPONSE REGULATORS (ARR) to the promoters of cytokinin-regulated genes, where they act as transcriptional co-activators. The biological relevance of this mechanism is underpinned by the necessity of simultaneous presence of DELLAs and ARRs to restrict root meristem growth and to promote photomorphogenesis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/embryology , Cytokinins/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Activation/genetics , Arabidopsis Proteins/genetics , Base Sequence , Binding Sites/genetics , Chromatin Immunoprecipitation , DNA, Plant/genetics , Gene Expression Regulation, Plant , Plant Development/physiology , Plant Roots/growth & development , Promoter Regions, Genetic/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sequence Analysis, DNA , Signal Transduction
13.
New Phytol ; 201(3): 825-836, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24400898

ABSTRACT

Excessive gibberellin (GA) signalling, mediated through the DELLA proteins, has a negative impact on plant fertility. Loss of DELLA activity in the monocot rice (Oryza sativa) causes complete male sterility, but not in the dicot model Arabidopsis (Arabidopsis thaliana) ecotype Landsberg erecta (Ler), in which DELLA function has been studied most extensively, leading to the assumption that DELLA activity is not essential for Arabidopsis pollen development. A novel DELLA fertility phenotype was identified in the Columbia (Col-0) ecotype that necessitates re-evaluation of the general conclusions drawn from Ler. Fertility phenotypes were compared between the Col-0 and Ler ecotypes under conditions of chemical and genetic GA overdose, including mutants in both ecotypes lacking the DELLA paralogues REPRESSOR OF ga1-3 (RGA) and GA INSENSITIVE (GAI). Ler displays a less severe fertility phenotype than Col-0 under GA treatment. Col-0 rga gai mutants, in contrast with the equivalent Ler phenotype, were entirely male sterile, caused by post-meiotic defects in pollen development, which were rescued by the reintroduction of DELLA into either the tapetum or developing pollen. We conclude that DELLA activity is essential for Arabidopsis pollen development. Differences between the fertility responses of Col-0 and Ler might be caused by differences in downstream signalling pathways or altered DELLA expression.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Ecotype , Pollen/growth & development , Pollen/metabolism , Repressor Proteins/metabolism , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Genetic Complementation Test , Meiosis , Mutation/genetics , Plant Infertility , Pollen/cytology , Repressor Proteins/genetics
14.
J Exp Biol ; 217(Pt 1): 67-75, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24353205

ABSTRACT

Plant hormones are small molecules that regulate plant growth and development, as well as responses to changing environmental conditions. By modifying the production, distribution or signal transduction of these hormones, plants are able to regulate and coordinate both growth and/or stress tolerance to promote survival or escape from environmental stress. A central role for the gibberellin (GA) class of growth hormones in the response to abiotic stress is becoming increasingly evident. Reduction of GA levels and signalling has been shown to contribute to plant growth restriction on exposure to several stresses, including cold, salt and osmotic stress. Conversely, increased GA biosynthesis and signalling promote growth in plant escape responses to shading and submergence. In several cases, GA signalling has also been linked to stress tolerance. The transcriptional regulation of GA metabolism appears to be a major point of regulation of the GA pathway, while emerging evidence for interaction of the GA-signalling molecule DELLA with components of the signalling pathway for the stress hormone jasmonic acid suggests additional mechanisms by which GA signalling may integrate multiple hormone signalling pathways in the response to stress. Here, we review the evidence for the role of GA in these processes, and the regulation of the GA signalling pathway on exposure to abiotic stress. The potential mechanisms by which GA signalling modulates stress tolerance are also discussed.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Gibberellins/metabolism , Stress, Physiological , Arabidopsis/enzymology , Arabidopsis/growth & development , Cold Temperature , Cyclopentanes/metabolism , Environment , Gibberellins/genetics , Light , Osmotic Pressure , Oxylipins/metabolism , Plant Growth Regulators , Salinity , Signal Transduction , Transcription, Genetic
15.
Plant Physiol ; 160(2): 837-45, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22911627

ABSTRACT

The biosynthesis of gibberellic acid (GA(3)) by the fungus Fusarium fujikuroi is catalyzed by seven enzymes encoded in a gene cluster. While four of these enzymes are characterized as cytochrome P450 monooxygenases, the nature of a fifth oxidase, GA(4) desaturase (DES), is unknown. DES converts GA(4) to GA(7) by the formation of a carbon-1,2 double bond in the penultimate step of the pathway. Here, we show by expression of the des complementary DNA in Escherichia coli that DES has the characteristics of a 2-oxoglutarate-dependent dioxygenase. Although it has low amino acid sequence homology with known 2-oxoglutarate-dependent dioxygenases, putative iron- and 2-oxoglutarate-binding residues, typical of such enzymes, are apparent in its primary sequence. A survey of sequence databases revealed that homologs of DES are widespread in the ascomycetes, although in most cases the homologs must participate in non-gibberellin (GA) pathways. Expression of des from the cauliflower mosaic virus 35S promoter in the plant species Solanum nigrum, Solanum dulcamara, and Nicotiana sylvestris resulted in substantial growth stimulation, with a 3-fold increase in height in S. dulcamara compared with controls. In S. nigrum, the height increase was accompanied by a 20-fold higher concentration of GA(3) in the growing shoots than in controls, although GA(1) content was reduced. Expression of des was also shown to partially restore growth in plants dwarfed by ectopic expression of a GA 2-oxidase (GA-deactivating) gene, consistent with GA(3) being protected from 2-oxidation. Thus, des has the potential to enable substantial growth increases, with practical implications, for example, in biomass production.


Subject(s)
Fungal Proteins/isolation & purification , Fusarium/enzymology , Mixed Function Oxygenases/isolation & purification , Nicotiana/growth & development , Solanum/growth & development , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Caulimovirus/enzymology , Caulimovirus/genetics , Caulimovirus/metabolism , Chromatography, High Pressure Liquid , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Databases, Genetic , Enzyme Assays/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/genetics , Genetic Vectors , Gibberellins/biosynthesis , Gibberellins/genetics , Gibberellins/metabolism , Ketoglutaric Acids/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Sequence Alignment , Sequence Homology, Amino Acid , Solanum/genetics , Solanum/metabolism , Substrate Specificity , Nicotiana/genetics , Nicotiana/metabolism
16.
Proc Natl Acad Sci U S A ; 109(33): 13446-51, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22847438

ABSTRACT

Plant development is modulated by the convergence of multiple environmental and endogenous signals, and the mechanisms that allow the integration of different signaling pathways is currently being unveiled. A paradigmatic case is the concurrence of brassinosteroid (BR) and gibberellin (GA) signaling in the control of cell expansion during photomorphogenesis, which is supported by physiological observations in several plants but for which no molecular mechanism has been proposed. In this work, we show that the integration of these two signaling pathways occurs through the physical interaction between the DELLA protein GAI, which is a major negative regulator of the GA pathway, and BRASSINAZOLE RESISTANT1 (BZR1), a transcription factor that broadly regulates gene expression in response to BRs. We provide biochemical evidence, both in vitro and in vivo, indicating that GAI inactivates the transcriptional regulatory activity of BZR1 upon their interaction by inhibiting the ability of BZR1 to bind to target promoters. The physiological relevance of this interaction was confirmed by the observation that the dominant gai-1 allele interferes with BR-regulated gene expression, whereas the bzr1-1D allele displays enhanced resistance to DELLA accumulation during hypocotyl elongation. Because DELLA proteins mediate the response to multiple environmental signals, our results provide an initial molecular framework for the integration with BRs of additional pathways that control plant development.


Subject(s)
Arabidopsis/metabolism , Brassinosteroids/metabolism , Gibberellins/metabolism , Signal Transduction , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Darkness , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Hypocotyl/drug effects , Hypocotyl/growth & development , Hypocotyl/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Signal Transduction/drug effects
17.
Proc Natl Acad Sci U S A ; 109(19): 7571-6, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22523240

ABSTRACT

The hormone gibberellin (GA) is a key regulator of plant growth. Many of the components of the gibberellin signal transduction [e.g., GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA], biosynthesis [e.g., GA 20-oxidase (GA20ox) and GA3ox], and deactivation pathways have been identified. Gibberellin binds its receptor, GID1, to form a complex that mediates the degradation of DELLA proteins. In this way, gibberellin relieves DELLA-dependent growth repression. However, gibberellin regulates expression of GID1, GA20ox, and GA3ox, and there is also evidence that it regulates DELLA expression. In this paper, we use integrated mathematical modeling and experiments to understand how these feedback loops interact to control gibberellin signaling. Model simulations are in good agreement with in vitro data on the signal transduction and biosynthesis pathways and in vivo data on the expression levels of gibberellin-responsive genes. We find that GA-GID1 interactions are characterized by two timescales (because of a lid on GID1 that can open and close slowly relative to GA-GID1 binding and dissociation). Furthermore, the model accurately predicts the response to exogenous gibberellin after a number of chemical and genetic perturbations. Finally, we investigate the role of the various feedback loops in gibberellin signaling. We find that regulation of GA20ox transcription plays a significant role in both modulating the level of endogenous gibberellin and generating overshoots after the removal of exogenous gibberellin. Moreover, although the contribution of other individual feedback loops seems relatively small, GID1 and DELLA transcriptional regulation acts synergistically with GA20ox feedback.


Subject(s)
Algorithms , Gibberellins/metabolism , Models, Genetic , Transcription, Genetic/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Feedback, Physiological/drug effects , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Transcription, Genetic/drug effects
18.
Biochem J ; 444(1): 11-25, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22533671

ABSTRACT

The GAs (gibberellins) comprise a large group of diterpenoid carboxylic acids that are ubiquitous in higher plants, in which certain members function as endogenous growth regulators, promoting organ expansion and developmental changes. These compounds are also produced by some species of lower plants, fungi and bacteria, although, in contrast to higher plants, the function of GAs in these organisms has only recently been investigated and is still unclear. In higher plants, GAs are synthesized by the action of terpene cyclases, cytochrome P450 mono-oxygenases and 2-oxoglutarate-dependent dioxygenases localized, respectively, in plastids, the endomembrane system and the cytosol. The concentration of biologically active GAs at their sites of action is tightly regulated and is moderated by numerous developmental and environmental cues. Recent research has focused on regulatory mechanisms, acting primarily on expression of the genes that encode the dioxygenases involved in biosynthesis and deactivation. The present review discusses the current state of knowledge on GA metabolism with particular emphasis on regulation, including the complex mechanisms for the maintenance of GA homoeostasis.


Subject(s)
Gibberellins/biosynthesis , Plants/metabolism , Environment , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gibberellins/genetics , Homeostasis , Plant Development , Plants/genetics
19.
Plant Cell ; 24(3): 941-60, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22427334

ABSTRACT

Gibberellin (GA) biosynthesis is necessary for normal plant development, with later GA biosynthetic stages being governed by multigene families. Arabidopsis thaliana contains five GA 20-oxidase (GA20ox) genes, and past work has demonstrated the importance of GA20ox1 and -2 for growth and fertility. Here, we show through systematic mutant analysis that GA20ox1, -2, and -3 are the dominant paralogs; their absence results in severe dwarfism and almost complete loss of fertility. In vitro analysis revealed that GA20ox4 has full GA20ox activity, but GA20ox5 catalyzes only the first two reactions of the sequence by which GA(12) is converted to GA(9). GA20ox3 functions almost entirely redundantly with GA20ox1 and -2 at most developmental stages, including the floral transition, while GA20ox4 and -5 have very minor roles. These results are supported by analysis of the gene expression patterns in promoter:ß-glucuronidase reporter lines. We demonstrate that fertility is highly sensitive to GA concentration, that GA20ox1, -2, and -3 have significant effects on floral organ growth and anther development, and that both GA deficiency and overdose impact on fertility. Loss of GA20ox activity causes anther developmental arrest, with the tapetum failing to degrade. Some phenotypic recovery of late flowers in GA-deficient mutants, including ga1-3, indicated the involvement of non-GA pathways in floral development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Flowers/growth & development , Mixed Function Oxygenases/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Flowers/enzymology , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gibberellins/biosynthesis , Mixed Function Oxygenases/genetics , Mutation , Phylogeny , Plant Infertility , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development
20.
Plant Physiol ; 157(4): 1820-31, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22013218

ABSTRACT

The introduction of the Reduced height (Rht)-B1b and Rht-D1b semidwarfing genes led to impressive increases in wheat (Triticum aestivum) yields during the Green Revolution. The reduction in stem elongation in varieties containing these alleles is caused by a limited response to the phytohormone gibberellin (GA), resulting in improved resistance to stem lodging and yield benefits through an increase in grain number. Rht-B1 and Rht-D1 encode DELLA proteins, which act to repress GA-responsive growth, and their mutant alleles Rht-B1b and Rht-D1b are thought to confer dwarfism by producing more active forms of these growth repressors. While no semidwarfing alleles of Rht-A1 have been identified, we show that this gene is expressed at comparable levels to the other homeologs and represents a potential target for producing novel dwarfing alleles. In this study, we have characterized additional dwarfing mutations in Rht-B1 and Rht-D1. We show that the severe dwarfism conferred by Rht-B1c is caused by an intragenic insertion, which results in an in-frame 90-bp insertion in the transcript and a predicted 30-amino acid insertion within the highly conserved amino-terminal DELLA domain. In contrast, the extreme dwarfism of Rht-D1c is due to overexpression of the semidwarfing Rht-D1b allele, caused by an increase in gene copy number. We show also that the semidwarfing alleles Rht-B1d and Rht-B1e introduce premature stop codons within the amino-terminal coding region. Yeast two-hybrid assays indicate that these newly characterized mutations in Rht-B1 and Rht-D1 confer "GA-insensitive" dwarfism by producing DELLA proteins that do not bind the GA receptor GA INSENSITIVE DWARF1, potentially compromising their targeted degradation.


Subject(s)
Gibberellins/pharmacology , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Triticum/growth & development , Triticum/genetics , Alleles , Amino Acid Sequence , Base Sequence , DNA, Plant/chemistry , DNA, Plant/genetics , Molecular Sequence Data , Mutation , Phenotype , Plant Proteins/metabolism , Plant Stems/genetics , Plant Stems/growth & development , Polyploidy , RNA, Messenger/genetics , RNA, Plant/genetics , Sequence Alignment , Sequence Analysis, DNA , Triticum/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...