Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Antioxidants (Basel) ; 13(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929156

ABSTRACT

Oxidative stress can damage tissues and cells, and their resilience or susceptibility depends on the robustness of their antioxidant mechanisms. The latter include small molecules, proteins, and enzymes, which are linked together in metabolic pathways. Red blood cells are particularly susceptible to oxidative stress due to their large number of hemoglobin molecules, which can undergo auto-oxidation. This yields reactive oxygen species that participate in Fenton chemistry, ultimately damaging their membranes and cytosolic constituents. Fortunately, red blood cells contain robust antioxidant systems to enable them to circulate and perform their physiological functions, particularly delivering oxygen and removing carbon dioxide. Nonetheless, if red blood cells have insufficient antioxidant reserves (e.g., due to genetics, diet, disease, or toxin exposure), this can induce hemolysis in vivo or enhance susceptibility to a "storage lesion" in vitro, when blood donations are refrigerator-stored for transfusion purposes. Ergothioneine, a small molecule not synthesized by mammals, is obtained only through the diet. It is absorbed from the gut and enters cells using a highly specific transporter (i.e., SLC22A4). Certain cells and tissues, particularly red blood cells, contain high ergothioneine levels. Although no deficiency-related disease has been identified, evidence suggests ergothioneine may be a beneficial "nutraceutical." Given the requirements of red blood cells to resist oxidative stress and their high ergothioneine content, this review discusses ergothioneine's potential importance in protecting these cells and identifies knowledge gaps regarding its relevance in enhancing red blood cell circulatory, storage, and transfusion quality.

2.
Ann Neurol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924596

ABSTRACT

OBJECTIVE: Alzheimer's disease (AD) is believed to be more common in African Americans (AA), but biomarker studies in AA populations are limited. This report represents the largest study to date examining cerebrospinal fluid AD biomarkers in AA individuals. METHODS: We analyzed 3,006 cerebrospinal fluid samples from controls, AD cases, and non-AD cases, including 495 (16.5%) self-identified black/AA and 2,456 (81.7%) white/European individuals using cutoffs derived from the Alzheimer's Disease Neuroimaging Initiative, and using a data-driven multivariate Gaussian mixture of regressions. RESULTS: Distinct effects of race were found in different groups. Total Tauand phospho181-Tau were lower among AA individuals in all groups (p < 0.0001), and Aß42 was markedly lower in AA controls compared with white controls (p < 0.0001). Gaussian mixture of regressions modeling of cerebrospinal fluid distributions incorporating adjustments for covariates revealed coefficient estimates for AA race comparable with 2-decade change in age. Using Alzheimer's Disease Neuroimaging Initiative cutoffs, fewer AA controls were classified as biomarker-positive asymptomatic AD (8.0% vs 13.4%). After adjusting for covariates, our Gaussian mixture of regressions model reduced this difference, but continued to predict lower prevalence of asymptomatic AD among AA controls (9.3% vs 13.5%). INTERPRETATION: Although the risk of dementia is higher, data-driven modeling indicates lower frequency of asymptomatic AD in AA controls, suggesting that dementia among AA populations may not be driven by higher rates of AD. ANN NEUROL 2024.

3.
Vox Sang ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38643983

ABSTRACT

BACKGROUND AND OBJECTIVES: Platelet transfusions are increasing with medical advances. Based on FDA criteria, platelet units are assessed by in vitro measures; however, it is not known how platelet processing and storage duration affect function in vivo. Our study's aim was to develop a novel platelet transfusion model stored in mouse plasma that meets FDA criteria adapted to mice, and transfused fresh and stored platelets are detectable in clots in vivo. STUDY DESIGN AND METHODS: Platelet units stored in mouse plasma were prepared using a modified platelet-rich plasma (PRP) collection protocol. Characteristics of fresh and stored units, including pH, cell count, in vitro measures of activity, including activation and aggregation, and post-transfusion recovery (PTR), were determined. Lastly, a tail transection assay was conducted using mice transfused with fresh or stored units, and transfused platelets were identified by confocal imaging. RESULTS: Platelet units had acceptable platelet and white cell counts and were negative for bacterial contamination. Fresh and 1-day stored units had acceptable pH; the platelets were activatable by thrombin and adenosine diphosphate, agreeable with thrombin, had acceptable PTR, and were present in vivo in clots of recipients after tail transection. In contrast, 2-day stored units had clinically unacceptable quality. CONCLUSION: We developed mouse platelets for transfusion analogous to human platelet units using a modified PRP collection protocol with maximum storage of 1 day for an 'old' unit. This provides a powerful tool to test how process modifications and storage conditions affect transfused platelet function in vivo.

5.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014145

ABSTRACT

BACKGROUND: Platelet transfusions are increasing with advances in medical care. Based on FDA criteria, platelet units are assessed by in vitro measures; however, it is not known how platelet processing and storage duration affect function in vivo. To address this, we developed a novel platelet transfusion model that meets FDA criteria adapted to mice, and transfused fresh and stored platelets are detected in clots in vivo. STUDY DESIGN AND METHODS: Platelet units stored in mouse plasma were prepared using a modified platelet rich plasma collection protocol. Characteristics of fresh and stored units, including pH, cell count, in vitro measures of activity, including activation and aggregation, and post-transfusion recovery (PTR), were determined. Lastly, a tail transection assay was conducted using mice transfused with fresh or stored units, and transfused platelets were identified by confocal imaging. RESULTS: Platelet units had acceptable platelet and white cell counts and were negative for bacterial contamination. Fresh and 1-day stored units had acceptable pH; the platelets were activatable by thrombin and ADP, aggregable with thrombin, had acceptable PTR, and were present in vivo in clots of recipients after tail transection. In contrast, 2-day stored units had clinically unacceptable quality. DISCUSSION: We developed mouse platelets for transfusion analogous to human platelet units using a modified platelet rich plasma collection protocol with maximum storage of 1 day for an "old" unit. This provides a powerful tool to test how process modifications and storage conditions affect transfused platelet function in vivo.

6.
Nutrients ; 15(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37892532

ABSTRACT

Long-chain polyunsaturated fatty acids (LC-PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary LC-PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. Female C57BL/6J mice consumed diets containing increasing amounts of fish oil (FO) ad libitum for 8 weeks. RBC deformability, filterability, and post-transfusion recovery (PTR) were evaluated before and after cold storage. Lipidomics and lipid peroxidation markers were evaluated in fresh and stored RBCs. High-dose dietary FO (50%, 100%) was associated with a reduction in RBC quality (i.e., in vivo lifespan, deformability, lipid peroxidation) along with a reduced 24 h PTR after cold storage. Low-dose dietary FO (6.25-12.5%) improved the filterability of fresh RBCs and reduced the lipid peroxidation of cold-stored RBCs. Although low doses of FO improved RBC deformability and reduced oxidative stress, no improvement was observed for the PTR of stored RBCs. The improvement in RBC deformability observed with low-dose FO supplementation could potentially benefit endurance athletes and patients with conditions resulting from reduced perfusion, such as peripheral vascular disease.


Subject(s)
Dietary Fats, Unsaturated , Erythrocyte Deformability , Humans , Female , Mice , Animals , Mice, Inbred C57BL , Erythrocytes/metabolism , Fish Oils/pharmacology , Fish Oils/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids/metabolism , Dietary Fats, Unsaturated/metabolism , Blood Preservation/methods
7.
Lipids Health Dis ; 22(1): 144, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37670291

ABSTRACT

BACKGROUND: Lipoprotein (a) [Lp(a)] is an apoB100-containing lipoprotein with high levels being positively associated with atherosclerotic cardiovascular disease. Lp(a) levels are genetically determined. However, previous studies report a negative association between Lp(a) and saturated fatty acid intake. Currently, apoB100 lowering therapies are used to lower Lp(a) levels, and apheresis therapy is FDA approved for patients with extreme elevations of Lp(a). The current study analyzed the association of free-living diet components with plasma Lp(a) levels. METHODS: Dietary composition data was collected during screening visits for enrollment in previously completed lipid and lipoprotein metabolism studies at Columbia University Irving Medical Center via a standardized protocol by registered dietitians using 24 hour recalls. Data were analyzed with the Nutrition Data System for Research (Version 2018). Diet quality was calculated using the Healthy Eating Index (HEI) score. Fasting plasma Lp(a) levels were measured via an isoform-independent ELISA and apo(a) isoforms were measured using gel electrophoresis. RESULTS: We enrolled 28 subjects [Black (n = 18); Hispanic (n = 7); White (n = 3)]. The mean age was 48.3 ± 12.5 years with 17 males. Median level of Lp(a) was 79.9 nmol/L (34.4-146.0) and it was negatively associated with absolute (grams/day) and relative (percent of total calories) intake of dietary saturated fatty acids (SFA) (R = -0.43, P = 0.02, SFA …(% CAL): R = -0.38, P = 0.04), palmitic acid intake (R = -0.38, P = 0.05), and stearic acid intake (R = -0.40, P = 0.03). Analyses of associations with HEI score when stratified based on Lp(a) levels > or ≤ 100 nmol/L revealed no significant associations with any of the constituent factors. CONCLUSIONS: Using 24 hour recall, we confirm previous findings that Lp(a) levels are negatively associated with dietary saturated fatty acid intake. Additionally, Lp(a) levels are not related to diet quality, as assessed by the HEI score. The mechanisms underlying the relationship of SFA with Lp(a) require further investigation.


Subject(s)
Diet , Lipoprotein(a) , Male , Humans , Adult , Middle Aged , Apolipoproteins A , Fasting , Energy Intake
8.
Article in English | MEDLINE | ID: mdl-37602758

ABSTRACT

Subjective cognitive complaints (SCC) in cognitively intact older adults have been investigated as a clinically important symptom that may portend the onset of a neurodegenerative disorder such as Alzheimer's disease. Few studies have concurrently incorporated demographic features, depressive symptoms, neuropsychological status, and neuroimaging correlates of SCC and evaluated whether these differ in White and African American older adults. In the current study, 131 (77 White, 54 African American) healthy participants ≥50 years old completed the Cognitive Function Instrument (CFI) to assess SCC, and they underwent objective cognitive testing, assessment of mood, and brain magnetic resonance imaging. Pearson Product Moment correlations were performed to evaluate associations of the CFI self-ratings with the above measures for the combined group and separately for White and African American participants. SCC were associated with greater depressive symptoms in both White and African American participants in adjusted models controlling for overall cognitive status, education, and hypertension. Greater white matter hyperintensities, lower cortical thickness, older age, and slower set shifting speed were associated with increased SCC in White participants. Although the correlations were not significant for African Americans, the strength of the associations were comparable to White participants. Hippocampal volume was not associated with either total SCC or items specific to memory functioning in the entire group. Longitudinal studies are needed to further evaluate the clinical significance of these associations with risk of conversion to mild cognitive impairment and dementia.


Subject(s)
Black or African American , Cognitive Dysfunction , Aged , Humans , Cognition , Cognitive Dysfunction/diagnosis , Demography , Neuroimaging , Neuropsychological Tests , White , Middle Aged
9.
medRxiv ; 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37425717

ABSTRACT

In 2014, exome-wide studies identified a glutamine176lysine (p.E167K) substitution in a protein of unknown function named transmembrane 6 superfamily member 2 (TM6SF2). The p.E167K variant was associated with increased hepatic fat content and reduced levels of plasma TG and LDL cholesterol. Over the next several years, additional studies defined the role of TM6SF2, which resides in the ER and the ER-Golgi interface, in the lipidation of nascent VLDL to generate mature, more TG-rich VLDL. Consistent results from cells and rodents indicated that the secretion of TG was reduced in the p.E167K variant or when hepatic TM6SF2 was deleted. However, data for secretion of APOB was inconsistent, either reduced or increased secretion was observed. A recent study of people homozygous for the variant demonstrated reduced in vivo secretion of large, TG-rich VLDL1 into plasma; both TG and APOB secretion were reduced. Here we present new results demonstrating increased secretion of VLDL APOB with no change in TG secretion in p.E167K homozygous individuals from the Lancaster Amish community compared to their wild-type siblings. Our in vivo kinetic tracer results are supported by in vitro experiments in HepG2 and McA cells with knock-down or Crispr-deletions of TM6SF2, respectively. We offer a model to potentially explain all of the prior data and our new results.

10.
Haematologica ; 108(10): 2639-2651, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37078267

ABSTRACT

Although red blood cell (RBC) transfusions save lives, some patients develop clinically-significant alloantibodies against donor blood group antigens, which then have adverse effects in multiple clinical settings. Few effective measures exist to prevent RBC alloimmunization and/or eliminate alloantibodies in sensitized patients. Donor-related factors may influence alloimmunization; thus, there is an unmet clinical need to identify which RBC units are immunogenic. Repeat volunteer blood donors and donors on iron supplements have elevated reticulocyte counts compared to healthy non-donors. Early reticulocytes retain mitochondria and other components, which may act as danger signals in immune responses. Herein, we tested whether reticulocytes in donor RBC units could enhance RBC alloimmunization. Using a murine model, we demonstrate that transfusing donor RBC units with increased reticulocyte frequencies dose-dependently increased RBC alloimmunization rates and alloantibody levels. Transfusing reticulocyte-rich RBC units was associated with increased RBC clearance from the circulation and a robust proinflammatory cytokine response. As compared to previously reported post-transfusion RBC consumption patterns, erythrophagocytosis from reticulocyte-rich units was increasingly performed by splenic B cells. These data suggest that reticulocytes in a donated RBC unit impact the quality of blood transfused, are targeted to a distinct compartment, and may be an underappreciated risk factor for RBC alloimmunization.


Subject(s)
Isoantibodies , Reticulocytes , Humans , Mice , Animals , Blood Donors , Erythrocytes , Risk Factors
11.
bioRxiv ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36747702

ABSTRACT

Although red blood cell (RBC) transfusions save lives, some patients develop clinically-significant alloantibodies against donor blood group antigens, which then have adverse effects in multiple clinical settings. Few effective measures exist to prevent RBC alloimmunization and/or eliminate alloantibodies in sensitized patients. Donor-related factors may influence alloimmunization; thus, there is an unmet clinical need to identify which RBC units are immunogenic. Repeat volunteer blood donors and donors on iron supplements have elevated reticulocyte counts compared to healthy non-donors. Early reticulocytes retain mitochondria and other components, which may act as danger signals in immune responses. Herein, we tested whether reticulocytes in donor RBC units could enhance RBC alloimmunization. Using a murine model, we demonstrate that transfusing donor RBC units with increased reticulocyte frequencies dose-dependently increase RBC alloimmunization rates and alloantibody levels. Transfusing reticulocyte-rich RBC units was associated with increased RBC clearance from the circulation and a robust proinflammatory cytokine response. As compared to previously reported post-transfusion RBC consumption patterns, erythrophagocytosis from reticulocyte-rich units was increasingly performed by splenic B cells. These data suggest that reticulocytes in a donated RBC unit impact the quality of blood transfused, are targeted to a distinct compartment, and may be an underappreciated risk factor for RBC alloimmunization.

12.
J Lipid Res ; 64(3): 100336, 2023 03.
Article in English | MEDLINE | ID: mdl-36706955

ABSTRACT

Lipoprotein(a) [Lp(a)] has two main proteins, apoB100 and apo(a). High levels of Lp(a) confer an increased risk for atherosclerotic cardiovascular disease. Most people have two circulating isoforms of apo(a) differing in their molecular mass, determined by the number of Kringle IV Type 2 repeats. Previous studies report a strong inverse relationship between Lp(a) levels and apo(a) isoform sizes. The roles of Lp(a) production and fractional clearance and how ancestry affects this relationship remain incompletely defined. We therefore examined the relationships of apo(a) size with Lp(a) levels and both apo(a) fractional clearance rates (FCR) and production rates (PR) in 32 individuals not on lipid-lowering treatment. We determined plasma Lp(a) levels and apo(a) isoform sizes, and used the relative expression of the two isoforms to calculate a "weighted isoform size" (wIS). Stable isotope studies were performed, using D3-leucine, to determine the apo(a) FCR and PR. As expected, plasma Lp(a) concentrations were inversely correlated with wIS (R2 = 0.27; P = 0.002). The wIS had a modest positive correlation with apo(a) FCR (R2 = 0.10, P = 0.08), and a negative correlation with apo(a) PR (R2 = 0.11; P = 0.06). The relationship between wIS and PR became significant when we controlled for self-reported race and ethnicity (SRRE) (R2 = 0.24, P = 0.03); controlling for SRRE did not affect the relationship between wIS and FCR. Apo(a) wIS plays a role in both FCR and PR; however, adjusting for SRRE strengthens the correlation between wIS and PR, suggesting an effect of ancestry.


Subject(s)
Atherosclerosis , Lipoprotein(a) , Humans , Apoprotein(a)/metabolism , Apolipoproteins A , Protein Isoforms
13.
Br J Haematol ; 198(3): 574-586, 2022 08.
Article in English | MEDLINE | ID: mdl-35670632

ABSTRACT

Sickle cell disease (SCD) is an inherited blood disorder characterized by sickled red blood cells (RBCs), which are more sensitive to haemolysis and can contribute to disease pathophysiology. Although treatment of SCD can include RBC transfusion, patients with SCD have high rates of alloimmunization. We hypothesized that RBCs from patients with SCD have functionally active mitochondria and can elicit a type 1 interferon response. We evaluated blood samples from more than 100 patients with SCD and found elevated frequencies of mitochondria in reticulocytes and mature RBCs, as compared to healthy blood donors. The presence of mitochondria in mature RBCs was confirmed by flow cytometry, electron microscopy, and proteomic analysis. The mitochondria in mature RBCs were metabolically competent, as determined by enzymatic activities and elevated levels of mitochondria-derived metabolites. Metabolically-active mitochondria in RBCs may increase oxidative stress, which could facilitate and/or exacerbate SCD complications. Coculture of mitochondria-positive RBCs with neutrophils induced production of type 1 interferons, which are known to increase RBC alloimmunization rates. These data demonstrate that mitochondria retained in mature RBCs are functional and can elicit immune responses, suggesting that inappropriate retention of mitochondria in RBCs may play an underappreciated role in SCD complications and be an RBC alloimmunization risk factor.


Subject(s)
Anemia, Sickle Cell , Proteomics , Erythrocytes/metabolism , Hemolysis , Humans , Mitochondria
14.
Front Physiol ; 13: 868578, 2022.
Article in English | MEDLINE | ID: mdl-35557972

ABSTRACT

Background: Long-chain polyunsaturated fatty acids (PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. However, enriching the lipid membrane with PUFAs increases the potential for peroxidation in oxidative environments (e.g., refrigerated storage), resulting in membrane damage. Substitution of bis-allylic hydrogens with deuterium ions in PUFAs decreases hydrogen abstraction, thereby inhibiting peroxidation. If lipid peroxidation is a causal factor in the RBC storage lesion, incorporation of deuterated linoleic acid (DLA) into the RBC membrane should decrease lipid peroxidation, thereby improving RBC lifespan, deformability, filterability, and post-transfusion recovery (PTR) after cold storage. Study Design and Methods: Mice associated with good (C57BL/6J) and poor (FVB) RBC storage quality received diets containing 11,11-D2-LA Ethyl Ester (1.0 g/100 g diet; deuterated linoleic acid) or non-deuterated LA Ethyl Ester (control) for 8 weeks. Deformability, filterability, lipidomics, and lipid peroxidation markers were evaluated in fresh and stored RBCs. Results: DLA was incorporated into RBC membranes in both mouse strains. DLA diet decreased lipid peroxidation (malondialdehyde) by 25.4 and 31% percent in C57 mice and 12.9 and 79.9% in FVB mice before and after cold storage, respectively. In FVB, but not C57 mice, deformability filterability, and post-transfusion recovery were significantly improved. Discussion: In a mouse model of poor RBC storage, with elevated reactive oxygen species production, DLA attenuated lipid peroxidation and significantly improved RBC storage quality.

15.
Cells ; 10(9)2021 09 02.
Article in English | MEDLINE | ID: mdl-34571942

ABSTRACT

The Corona Virus Disease 2019 (COVID-19) pandemic represents an ongoing worldwide challenge. The present large study sought to understand independent and overlapping metabolic features of samples from acutely ill patients (n = 831) that tested positive (n = 543) or negative (n = 288) for COVID-19. High-throughput metabolomics analyses were complemented with antigen and enzymatic activity assays on plasma from acutely ill patients collected while in the emergency department, at admission, or during hospitalization. Lipidomics analyses were also performed on COVID-19-positive or -negative subjects with the lowest and highest body mass index (n = 60/group). Significant changes in amino acid and fatty acid/acylcarnitine metabolism emerged as highly relevant markers of disease severity, progression, and prognosis as a function of biological and clinical variables in these patients. Further, machine learning models were trained by entering all metabolomics and clinical data from half of the COVID-19 patient cohort and then tested on the other half, yielding ~78% prediction accuracy. Finally, the extensive amount of information accumulated in this large, prospective, observational study provides a foundation for mechanistic follow-up studies and data sharing opportunities, which will advance our understanding of the characteristics of the plasma metabolism in COVID-19 and other acute critical illnesses.


Subject(s)
COVID-19/metabolism , Prognosis , Acute Disease , Adult , Amino Acids/blood , Body Mass Index , Carnitine/analogs & derivatives , Carnitine/blood , Cohort Studies , Fatty Acids/blood , Female , Humans , Kynurenine/blood , Machine Learning , Metabolomics , Middle Aged , Prospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Tryptophan/blood
16.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: mdl-34138756

ABSTRACT

Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is the single most common enzymopathy, present in approximately 400 million humans (approximately 5%). Its prevalence is hypothesized to be due to conferring resistance to malaria. However, G6PD deficiency also results in hemolytic sequelae from oxidant stress. Moreover, G6PD deficiency is associated with kidney disease, diabetes, pulmonary hypertension, immunological defects, and neurodegenerative diseases. To date, the only available mouse models have decreased levels of WT stable G6PD caused by promoter mutations. However, human G6PD mutations are missense mutations that result in decreased enzymatic stability. As such, this results in very low activity in red blood cells (RBCs) that cannot synthesize new protein. To generate a more accurate model, the human sequence for a severe form of G6PD deficiency, Med(-), was knocked into the murine G6PD locus. As predicted, G6PD levels were extremely low in RBCs, and deficient mice had increased hemolytic sequelae to oxidant stress. Nonerythroid organs had metabolic changes consistent with mild G6PD deficiency, consistent with what has been observed in humans. Juxtaposition of G6PD-deficient and WT mice revealed altered lipid metabolism in multiple organ systems. Together, these findings both establish a mouse model of G6PD deficiency that more accurately reflects human G6PD deficiency and advance our basic understanding of altered metabolism in this setting.


Subject(s)
Erythrocytes/metabolism , Glucosephosphate Dehydrogenase Deficiency/metabolism , Glucosephosphate Dehydrogenase/genetics , Hemolysis/genetics , Animals , Disease Models, Animal , Female , Gene Knock-In Techniques , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase Deficiency/blood , Glucosephosphate Dehydrogenase Deficiency/genetics , Humans , Male , Mice , Mutation , Oxidative Stress/genetics
17.
Res Sq ; 2021 May 10.
Article in English | MEDLINE | ID: mdl-34013258

ABSTRACT

The Corona Virus Disease 2019 (COVID-19) pandemic represents an ongoing worldwide challenge. Exploratory studies evaluating the impact of COVID-19 infection on the plasma metabolome have been performed, often with small numbers of patients, and with or without relevant control data; however, determining the impact of biological and clinical variables remains critical to understanding potential markers of disease severity and progression. The present large study, including relevant controls, sought to understand independent and overlapping metabolic features of samples from acutely ill patients (n = 831), testing positive (n = 543) or negative (n = 288) for COVID-19. High-throughput metabolomics analyses were complemented with antigen and enzymatic activity assays on 831 plasma samples from acutely ill patients while in the emergency department, at admission, and during hospitalization. We then performed additional lipidomics analyses of the 60 subjects with the lowest and highest body mass index, either COVID-19 positive or negative. Omics data were correlated to detailed data on patient characteristics and clinical laboratory assays measuring coagulation, hematology and chemistry analytes. Significant changes in arginine/proline/citrulline, tryptophan/indole/kynurenine, fatty acid and acyl-carnitine metabolism emerged as highly relevant markers of disease severity, progression and prognosis as a function of biological and clinical variables in these patients. Further, machine learning models were trained by entering all metabolomics and clinical data from half of the COVID-19 patient cohort and then tested on the other half yielding ~ 78% prediction accuracy. Finally, the extensive amount of information accumulated in this large, prospective, observational study provides a foundation for follow-up mechanistic studies and data sharing opportunities, which will advance our understanding of the characteristics of the plasma metabolism in COVID-19 and other acute critical illnesses.

18.
Transfusion ; 61(6): 1867-1883, 2021 06.
Article in English | MEDLINE | ID: mdl-33904180

ABSTRACT

BACKGROUND: Increases in the red blood cell (RBC) degree of fatty acid desaturation are reported in response to exercise, aging, or diseases associated with systemic oxidant stress. However, no studies have focused on the presence and activity of fatty acid desaturases (FADS) in the mature RBC. STUDY DESIGN AND METHODS: Steady state metabolomics and isotope-labeled tracing experiments, immunofluorescence approaches, and pharmacological interventions were used to determine the degree of fatty acid unsaturation, FADS activity as a function of storage, oxidant stress, and G6PD deficiency in human and mouse RBCs. RESULTS: In 250 blood units from the REDS III RBC Omics recalled donor population, we report a storage-dependent accumulation of free mono-, poly-(PUFAs), and highly unsaturated fatty acids (HUFAs), which occur at a faster rate than saturated fatty acid accumulation. Through a combination of immunofluorescence, pharmacological inhibition, tracing experiments with stable isotope-labeled fatty acids, and oxidant challenge with hydrogen peroxide, we demonstrate the presence and redox-sensitive activity of FADS2, FADS1, and FADS5 in the mature RBC. Increases in PUFAs and HUFAs in human and mouse RBCs correlate negatively with storage hemolysis and positively with posttransfusion recovery. Inhibition of these enzymes decreases accumulation of free PUFAs and HUFAs in stored RBCs, concomitant to increases in pyruvate/lactate ratios. Alterations of this ratio in G6PD deficient patients or units supplemented with pyruvate-rich rejuvenation solutions corresponded to decreased PUFA and HUFA accumulation. CONCLUSION: Fatty acid desaturases are present and active in mature RBCs. Their activity is sensitive to oxidant stress, storage duration, and alterations of the pyruvate/lactate ratio.


Subject(s)
Blood Preservation/methods , Erythrocytes/enzymology , Fatty Acid Desaturases/metabolism , Stearoyl-CoA Desaturase/metabolism , Animals , Blood Donors , Delta-5 Fatty Acid Desaturase , Erythrocytes/metabolism , Fatty Acids, Unsaturated/metabolism , Humans , Lactic Acid/metabolism , Metabolomics , Mice , Oxidative Stress , Pyruvic Acid/metabolism
19.
Front Med (Lausanne) ; 8: 817305, 2021.
Article in English | MEDLINE | ID: mdl-35087853

ABSTRACT

Aging and obesity independently contribute toward an endothelial dysfunction that results in an imbalanced VWF to ADAMTS13 ratio. In addition, plasma thrombin and plasmin generation are elevated and reduced, respectively, with increasing age and also with increasing body mass index (BMI). The severity risk of Corona Virus Disease 2019 (COVID-19) increases in adults older than 65 and in individuals with certain pre-existing health conditions, including obesity (>30 kg/m2). The present cross-sectional study focused on an analysis of the VWF/ADAMTS13 axis, including measurements of von Willebrand factor (VWF) antigen (VWF:AG), VWF collagen binding activity (VWF:CBA), Factor VIII antigen, ADAMTS13 antigen, and ADAMTS13 activity, in addition to thrombin and plasmin generation potential, in a demographically diverse population of COVID-19 negative (-) (n = 288) and COVID-19 positive (+) (n = 543) patient plasmas collected at the time of hospital presentation. Data were analyzed as a whole, and then after dividing patients by age (<65 and ≥65) and independently by BMI [<18.5, 18.5-24.9, 25-29.9, >30 (kg/m2)]. These analyses suggest that VWF parameters (i.e., the VWF/ADAMTS13 activity ratio) and thrombin and plasmin generation differed in COVID-19 (+), as compared to COVID-19 (-) patient plasma. Further, age (≥65) more than BMI contributed to aberrant plasma indicators of endothelial coagulopathy. Based on these findings, evaluating both the VWF/ADAMTS13 axis, along with thrombin and plasmin generation, could provide insight into the extent of endothelial dysfunction as well as the plasmatic imbalance in coagulation and fibrinolysis potential, particularly for at-risk patient populations.

20.
Front Physiol ; 11: 593841, 2020.
Article in English | MEDLINE | ID: mdl-33192610

ABSTRACT

As part of the ZOOMICS project, we set out to investigate common and diverging metabolic traits in the blood metabolome across various species by taking advantage of recent developments in high-throughput metabolomics. Here we provide the first comparative metabolomics analysis of fresh and stored human (n = 21, 10 males, 11 females), olive baboon (n = 20), and rhesus macaque (n = 20) red blood cells at baseline and upon 42 days of storage under blood bank conditions. The results indicated similarities and differences across species, which ultimately resulted in a differential propensity to undergo morphological alterations and lyse as a function of the duration of refrigerated storage. Focusing on purine oxidation, carboxylic acid, fatty acid, and arginine metabolism further highlighted species-specific metabolic wiring. For example, through a combination of steady state measurements and 13C6 15N4-arginine tracing experiments, we report an increase in arginine catabolism into ornithine in humans, suggestive of species-specific arginase 1 activity and nitric oxide synthesis-an observation that may impact the translatability of cardiovascular disease studies carried out in non-human primates (NHPs). Finally, we correlated metabolic measurements to storage-induced morphological alterations via scanning electron microscopy and hemolysis, which were significantly lower in human red cells compared to both NHPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...