Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-517156

ABSTRACT

Millions of Norway rats (Rattus norvegicus)inhabit New York City (NYC), presenting the potential for transmission of SARS-CoV-2 from humans to rats and other wildlife. We evaluated SARS-CoV-2 exposure among 79 rats captured from NYC during the fall of 2021. Results showed that 13 of 79 rats (16.5%) tested IgG or IgM positive, and partial genomes of SARS-CoV-2 were recovered from four rats that were qRT-PCR positive. Using a virus challenge study, we also showed that Alpha, Delta, and Omicron variants can cause robust infections in wild-type Sprague Dawley (SD) rats, including high level replications in the upper and lower respiratory tracts and induction of both innate and adaptive immune responses. Additionally, the Delta variant resulted in the highest infectivity. In summary, our results indicated that rats are susceptible to infection with Alpha, Delta, and Omicron variants, and rats in the NYC municipal sewer systems have been exposed to SARS-CoV-2. Our findings highlight the potential risk of secondary zoonotic transmission from urban rats and the need for further monitoring of SARS-CoV-2 in those populations. ImportanceSince its emergence causing the COVID-19 pandemic, the host tropism expansion of SARS-CoV-2 raises a potential risk for reverse-zoonotic transmission of emerging variants into rodent species, including wild rat species. In this study, we presented both genetic and serological evidence for SARS-CoV-2 exposure in wild rat population from New York City, and these viruses are potentially linked to the viruses during the early stages of the pandemic. We also demonstrated that rats are susceptible to additional variants (i.e., Alpha, Delta, and Omicron) predominant in humans and that the susceptibility to different variants vary. Our findings highlight the potential risk of secondary zoonotic transmission from urban rats and the need for further monitoring of SARS-CoV-2 in those populations.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-115781

ABSTRACT

Emerging diseases are increasing burdens on public health, negatively affecting the world economy, causing extinction of species, and disrupting ecological integrity. One Health recognizes that human, domestic animal, and wildlife health are interconnected within ecosystem health and provides a framework for the development of multidisciplinary solutions to global health challenges. To date, most health-promoting interventions have focused largely on single-sector outcomes. For example, risk for transmission of zoonotic pathogens from bush-meat hunting is primarily focused on human hygiene and personal protection. However, bush-meat hunting is a complex issue promoting the need for holistic strategies to reduce transmission of zoonotic disease while addressing food security and wildlife conservation issues. Temporal and spatial separation of humans and wildlife, risk communication, and other preventative strategies should allow wildlife and humans to co-exist. Upstream surveillance, vaccination, and other tools to prevent pathogen spillover are also needed. Clear multi-sector outcomes should be defined, and a systems-based approach is needed to develop interventions that reduce risks and balance the needs of humans, wildlife, and the environment. The ultimate goal is long-term action to reduce forces driving emerging diseases and provide interdisciplinary scientific approaches to management of risks, thereby achieving optimal outcomes for human, animal, and environmental health.


Subject(s)
Animals , Humans , Animals, Domestic , Communicable Diseases, Emerging , Ecosystem , Environmental Health , Food Supply , Global Health , Hygiene , Influenza in Birds , Public Health , Vaccination , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL
...