Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Mol Genet Metab ; 142(1): 108362, 2024 May.
Article in English | MEDLINE | ID: mdl-38452609

ABSTRACT

Cerebral creatine deficiency syndromes (CCDS) are inherited metabolic phenotypes of creatine synthesis and transport. There are two enzyme deficiencies, guanidinoacetate methyltransferase (GAMT), encoded by GAMT and arginine-glycine amidinotransferase (AGAT), encoded by GATM, which are involved in the synthesis of creatine. After synthesis, creatine is taken up by a sodium-dependent membrane bound creatine transporter (CRTR), encoded by SLC6A8, into all organs. Creatine uptake is very important especially in high energy demanding organs such as the brain, and muscle. To classify the pathogenicity of variants in GAMT, GATM, and SLC6A8, we developed the CCDS Variant Curation Expert Panel (VCEP) in 2018, supported by The Clinical Genome Resource (ClinGen), a National Institutes of Health (NIH)-funded resource. We developed disease-specific variant classification guidelines for GAMT-, GATM-, and SLC6A8-related CCDS, adapted from the American College of Medical Genetics/Association of Molecular Pathology (ACMG/AMP) variant interpretation guidelines. We applied specific variant classification guidelines to 30 pilot variants in each of the three genes that have variants associated with CCDS. Our CCDS VCEP was approved by the ClinGen Sequence Variant Interpretation Working Group (SVI WG) and Clinical Domain Oversight Committee in July 2022. We curated 181 variants including 72 variants in GAMT, 45 variants in GATM, and 64 variants in SLC6A8 and submitted these classifications to ClinVar, a public variant database supported by the National Center for Biotechnology Information. Missense variants were the most common variant type in all three genes. We submitted 32 new variants and reclassified 34 variants with conflicting interpretations. We report specific phenotype (PP4) using a points system based on the urine and plasma guanidinoacetate and creatine levels, brain magnetic resonance spectroscopy (MRS) creatine level, and enzyme activity or creatine uptake in fibroblasts ranging from PP4, PP4_Moderate and PP4_Strong. Our CCDS VCEP is one of the first panels applying disease specific variant classification algorithms for an X-linked disease. The availability of these guidelines and classifications can guide molecular genetics and genomic laboratories and health care providers to assess the molecular diagnosis of individuals with a CCDS phenotype.


Subject(s)
Amidinotransferases , Amidinotransferases/deficiency , Amino Acid Metabolism, Inborn Errors , Creatine , Creatine/deficiency , Guanidinoacetate N-Methyltransferase , Intellectual Disability , Language Development Disorders , Movement Disorders/congenital , Nerve Tissue Proteins , Plasma Membrane Neurotransmitter Transport Proteins , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Speech Disorders , Humans , Guanidinoacetate N-Methyltransferase/deficiency , Guanidinoacetate N-Methyltransferase/genetics , Creatine/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Amidinotransferases/genetics , Amidinotransferases/metabolism , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/diagnosis , Mutation , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/diagnosis , Phenotype , Data Curation , Developmental Disabilities
2.
Sci Rep ; 13(1): 21540, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057357

ABSTRACT

Exome sequencing (ES) has been used in a variety of clinical settings but there are limited data on its utility for diagnosis and/or prediction of monogenic liver diseases. We developed a curated list of 502 genes for monogenic disorders associated with liver phenotypes and analyzed ES data for these genes in 758 patients with chronic liver diseases (CLD). For comparison, we examined ES data in 7856 self-declared healthy controls (HC), and 2187 patients with chronic kidney disease (CKD). Candidate pathogenic (P) or likely pathogenic (LP) variants were initially identified in 19.9% of participants, most of which were attributable to previously reported pathogenic variants with implausibly high allele frequencies. After variant annotation and filtering based on population minor allele frequency (MAF ≤ 10-4 for dominant disorders and MAF ≤ 10-3 for recessive disorders), we detected a significant enrichment of P/LP variants in the CLD cohort compared to the HC cohort (X2 test OR 5.00, 95% CI 3.06-8.18, p value = 4.5e-12). A second-level manual annotation was necessary to capture true pathogenic variants that were removed by stringent allele frequency and quality filters. After these sequential steps, the diagnostic rate of monogenic disorders was 5.7% in the CLD cohort, attributable to P/LP variants in 25 genes. We also identified concordant liver disease phenotypes for 15/22 kidney disease patients with P/LP variants in liver genes, mostly associated with cystic liver disease phenotypes. Sequencing results had many implications for clinical management, including familial testing for early diagnosis and management, preventative screening for associated comorbidities, and in some cases for therapy. Exome sequencing provided a 5.7% diagnostic rate in CLD patients and required multiple rounds of review to reduce both false positive and false negative findings. The identification of concordant phenotypes in many patients with P/LP variants and no known liver disease also indicates a potential for predictive testing for selected monogenic liver disorders.


Subject(s)
Kidney Diseases , Liver Diseases , Humans , Exome Sequencing , Gene Frequency , Phenotype , Liver Diseases/diagnosis , Liver Diseases/genetics
3.
Eur J Hum Genet ; 31(10): 1117-1124, 2023 10.
Article in English | MEDLINE | ID: mdl-37500725

ABSTRACT

Nuclear receptor subfamily 2 group F member 2 (NR2F2 or COUP-TF2) encodes a transcription factor which is expressed at high levels during mammalian development. Rare heterozygous Mendelian variants in NR2F2 were initially identified in individuals with congenital heart disease (CHD), then subsequently in cohorts of congenital diaphragmatic hernia (CDH) and 46,XX ovotesticular disorders/differences of sexual development (DSD); however, the phenotypic spectrum associated with pathogenic variants in NR2F2 remains poorly characterized. Currently, less than 40 individuals with heterozygous pathogenic variants in NR2F2 have been reported. Here, we review the clinical and molecular details of 17 previously unreported individuals with rare heterozygous NR2F2 variants, the majority of which were de novo. Clinical features were variable, including intrauterine growth restriction (IUGR), CHD, CDH, genital anomalies, DSD, developmental delays, hypotonia, feeding difficulties, failure to thrive, congenital and acquired microcephaly, dysmorphic facial features, renal failure, hearing loss, strabismus, asplenia, and vascular malformations, thus expanding the phenotypic spectrum associated with NR2F2 variants. The variants seen were predicted loss of function, including a nonsense variant inherited from a mildly affected mosaic mother, missense and a large deletion including the NR2F2 gene. Our study presents evidence for rare, heterozygous NR2F2 variants causing a highly variable syndrome of congenital anomalies, commonly associated with heart defects, developmental delays/intellectual disability, dysmorphic features, feeding difficulties, hypotonia, and genital anomalies. Based on the new and previous cases, we provide clinical recommendations for evaluating individuals diagnosed with an NR2F2-associated disorder.


Subject(s)
Abnormalities, Multiple , Heart Defects, Congenital , Hernias, Diaphragmatic, Congenital , Intellectual Disability , Animals , Humans , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , COUP Transcription Factor II/genetics , Heart Defects, Congenital/genetics , Hernias, Diaphragmatic, Congenital/genetics , Intellectual Disability/genetics , Muscle Hypotonia , Syndrome
4.
Clin Genet ; 104(2): 210-225, 2023 08.
Article in English | MEDLINE | ID: mdl-37334874

ABSTRACT

Copy number variations (CNVs) play a significant role in human disease. While chromosomal microarray has traditionally been the first-tier test for CNV detection, use of genome sequencing (GS) is increasing. We report the frequency of CNVs detected with GS in a diverse pediatric cohort from the NYCKidSeq program and highlight specific examples of its clinical impact. A total of 1052 children (0-21 years) with neurodevelopmental, cardiac, and/or immunodeficiency phenotypes received GS. Phenotype-driven analysis was used, resulting in 183 (17.4%) participants with a diagnostic result. CNVs accounted for 20.2% of participants with a diagnostic result (37/183) and ranged from 0.5 kb to 16 Mb. Of participants with a diagnostic result (n = 183) and phenotypes in more than one category, 5/17 (29.4%) were solved by a CNV finding, suggesting a high prevalence of diagnostic CNVs in participants with complex phenotypes. Thirteen participants with a diagnostic CNV (35.1%) had previously uninformative genetic testing, of which nine included a chromosomal microarray. This study demonstrates the benefits of GS for reliable detection of CNVs in a pediatric cohort with variable phenotypes.


Subject(s)
DNA Copy Number Variations , Genetic Testing , Humans , Child , DNA Copy Number Variations/genetics , Chromosome Mapping/methods , Genetic Testing/methods , Phenotype , Microarray Analysis
5.
Genet Med ; 25(9): 100880, 2023 09.
Article in English | MEDLINE | ID: mdl-37158195

ABSTRACT

PURPOSE: Adoption of genome sequencing (GS) as a first-line test requires evaluation of its diagnostic yield. We evaluated the GS and targeted gene panel (TGP) testing in diverse pediatric patients (probands) with suspected genetic conditions. METHODS: Probands with neurologic, cardiac, or immunologic conditions were offered GS and TGP testing. Diagnostic yield was compared using a fully paired study design. RESULTS: A total of 645 probands (median age 9 years) underwent genetic testing, and 113 (17.5%) received a molecular diagnosis. Among 642 probands with both GS and TGP testing, GS yielded 106 (16.5%) and TGPs yielded 52 (8.1%) diagnoses (P < .001). Yield was greater for GS vs TGPs in Hispanic/Latino(a) (17.2% vs 9.5%, P < .001) and White/European American (19.8% vs 7.9%, P < .001) but not in Black/African American (11.5% vs 7.7%, P = .22) population groups by self-report. A higher rate of inconclusive results was seen in the Black/African American (63.8%) vs White/European American (47.6%; P = .01) population group. Most causal copy number variants (17 of 19) and mosaic variants (6 of 8) were detected only by GS. CONCLUSION: GS may yield up to twice as many diagnoses in pediatric patients compared with TGP testing but not yet across all population groups.


Subject(s)
Genetic Predisposition to Disease , Pathology, Molecular , Humans , Child , Genetic Testing/methods , Base Sequence , Chromosome Mapping
6.
Am J Med Genet A ; 191(7): 1935-1941, 2023 07.
Article in English | MEDLINE | ID: mdl-37031378

ABSTRACT

Autosomal recessive microcephaly and chorioretinopathy-1 (MCCRP1) is a rare Mendelian disorder resulting from biallelic loss of function variants in Tubulin-Gamma Complex Associated Protein 6 (TUBGCP6, MIM#610053). Clinical features of this disorder include microcephaly, cognitive impairment, dysmorphic features, and variable ophthalmological anomalies including chorioretinopathy. Microcephaly can be recognized prenatally and visual impairment becomes evident during the first year of life. The clinical presentation resembles the findings in some acquired conditions such as congenital toxoplasmosis and cytomegalovirus infections; thus, it is important to recognize and diagnose this syndrome in view of its impact on patient health management and familial reproductive plans. To date, only seven molecularly confirmed patients from five unrelated families have been reported. We report an additional four unrelated patients with TUBGCP6 variants including one prenatal diagnosis and review the clinical phenotypes and genotypes of all the known cases. This report expands the molecular and phenotypic spectrum of TUBGCP6 and includes additional prenatal findings associated with MCCRP1.


Subject(s)
Microcephaly , Retinal Diseases , Pregnancy , Humans , Female , Microcephaly/diagnosis , Microcephaly/genetics , Microcephaly/complications , Genotype , Phenotype , Microtubule-Associated Proteins/genetics
7.
medRxiv ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36993157

ABSTRACT

Purpose: Adoption of genome sequencing (GS) as a first-line test requires evaluation of its diagnostic yield. We evaluated the GS and targeted gene panel (TGP) testing in diverse pediatric patients (probands) with suspected genetic conditions. Methods: Probands with neurologic, cardiac, or immunologic conditions were offered GS and TGP testing. Diagnostic yield was compared using a fully paired study design. Results: 645 probands (median age 9 years) underwent genetic testing, and 113 (17.5%) received a molecular diagnosis. Among 642 probands with both GS and TGP testing, GS yielded 106 (16.5%) and TGPs yielded 52 (8.1%) diagnoses ( P < .001). Yield was greater for GS vs . TGPs in Hispanic/Latino(a) (17.2% vs . 9.5%, P < .001) and White/European American (19.8% vs . 7.9%, P < .001), but not in Black/African American (11.5% vs . 7.7%, P = .22) population groups by self-report. A higher rate of inconclusive results was seen in the Black/African American (63.8%) vs . White/European American (47.6%; P = .01) population group. Most causal copy number variants (17 of 19) and mosaic variants (6 of 8) were detected only by GS. Conclusion: GS may yield up to twice as many diagnoses in pediatric patients compared to TGP testing, but not yet across all population groups.

8.
Am J Med Genet A ; 191(3): 699-710, 2023 03.
Article in English | MEDLINE | ID: mdl-36563179

ABSTRACT

The increased use of next-generation sequencing has expanded our understanding of the involvement and prevalence of mosaicism in genetic disorders. We describe a total of eleven cases: nine in which mosaic variants detected by genome sequencing (GS) and/or targeted gene panels (TGPs) were considered to be causative for the proband's phenotype, and two of apparent parental mosaicism. Variants were identified in the following genes: PHACTR1, SCN8A, KCNT1, CDKL5, NEXMIF, CUX1, TSC2, GABRB2, and SMARCB1. In addition, we identified one large duplication including three genes, UBE3A, GABRB3, and MAGEL2, and one large deletion including deletion of ARFGAP1, EEF1A2, CHRNA4, and KCNQ2. All patients were enrolled in the NYCKidSeq study, a research program studying the communication of genomic information in clinical care, as well as the clinical utility and diagnostic yield of GS for children with suspected genetic disorders in diverse populations in New York City. We observed variability in the correlation between reported variant allele fraction and the severity of the patient's phenotype, although we were not able to determine the mosaicism percentage in clinically relevant tissue(s). Although our study was not sufficiently powered to assess differences in mosaicism detection between the two testing modalities, we saw a trend toward better detection by GS as compared with TGP testing. This case series supports the importance of mosaicism in childhood-onset genetic conditions and informs guidelines for laboratory and clinical interpretation of mosaic variants detected by GS.


Subject(s)
Spasms, Infantile , Humans , Alleles , Phenotype , Mosaicism , High-Throughput Nucleotide Sequencing , Proteins , Peptide Elongation Factor 1 , GTPase-Activating Proteins , Potassium Channels, Sodium-Activated , Nerve Tissue Proteins
9.
Sci Rep ; 12(1): 9358, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672425

ABSTRACT

Inherited retinal degenerations are clinically and genetically heterogeneous diseases characterized by progressive deterioration of vision. This study aimed at assessing the diagnostic yield of exome sequencing (ES) for an unselected cohort of individuals with hereditary retinal disorders. It is a retrospective study of 357 unrelated affected individuals, diagnosed with retinal disorders who underwent clinical ES. Variants from ES were filtered, prioritized, and classified using the ACMG recommendations. Clinical diagnosis of the individuals included rod-cone dystrophy (60%), macular dystrophy (20%), cone-rod dystrophy (9%), cone dystrophy (4%) and other phenotypes (7%). Majority of the cases (74%) were singletons and 6% were trios. A confirmed molecular diagnosis was obtained in 24% of cases. In 6% of cases, two pathogenic variants were identified with phase unknown, bringing the potential molecular diagnostic rate to ~ 30%. Including the variants of uncertain significance (VUS), potentially significant findings were reported in 57% of cases. Among cases with a confirmed molecular diagnosis, variants in EYS, ABCA4, USH2A, KIZ, CERKL, DHDDS, PROM1, NR2E3, CNGB1, ABCC6, PRPH2, RHO, PRPF31, PRPF8, SNRNP200, RP1, CHM, RPGR were identified in more than one affected individual. Our results support the utility of clinical ES in the diagnosis of genetically heterogeneous retinal disorders.


Subject(s)
Cone-Rod Dystrophies , Retinal Dystrophies , ATP-Binding Cassette Transporters/genetics , Cell Cycle Proteins , Cone-Rod Dystrophies/diagnosis , Cone-Rod Dystrophies/genetics , Cyclic Nucleotide-Gated Cation Channels/genetics , DNA Mutational Analysis , Exome/genetics , Eye Proteins/genetics , Humans , Mutation , Pedigree , Phenotype , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Retrospective Studies , Tertiary Care Centers
10.
NPJ Genom Med ; 7(1): 27, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35395838

ABSTRACT

Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test.

11.
Article in English | MEDLINE | ID: mdl-35022222

ABSTRACT

McArdle disease is a debilitating glycogen storage disease with typical onset in childhood. Here, we describe a former competitive athlete with early adult-onset McArdle disease and a septuagenarian with a history of exercise intolerance since adolescence who was evaluated for proximal muscle weakness. Exome sequencing identified biallelic variants in the PYGM gene for both cases. The former athlete has the common, well-known pathogenic variant p.(Arg50Ter) in trans with a novel missense variant, p.(Asp694Glu). The second individual has a previously described homozygous missense variant, p.(Arg771Gln). Here, we describe the clinical course, enzyme-testing results using muscle tissue, and molecular findings for the individuals and add to the knowledge of the genotypic spectrum of this disorder.


Subject(s)
Glycogen Phosphorylase, Muscle Form , Glycogen Storage Disease Type V , Adolescent , Adult , Genotype , Glycogen Phosphorylase, Muscle Form/genetics , Glycogen Storage Disease Type V/diagnosis , Glycogen Storage Disease Type V/genetics , Homozygote , Humans , Exome Sequencing
12.
Fertil Steril ; 116(5): 1351-1358, 2021 11.
Article in English | MEDLINE | ID: mdl-34756330

ABSTRACT

OBJECTIVE: To examine whether rare damaging genetic variants are associated with chromosomally normal pregnancy loss and estimate the magnitude of the association. DESIGN: Case-control. SETTING: Cases were derived from a consecutive series of karyotyped losses at one New Jersey hospital. Controls were derived from the National Database for Autism Research. PATIENT(S): Cases comprised 19 chromosomally normal loss conceptus-parent trios. Controls comprised 547 unaffected siblings of autism case-parent trios. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): The rate of damaging variants in the exome (loss of function and missense-damaging) and the proportions of probands with at least one such variant among cases vs. controls. RESULTS: The proportions of probands with at least one rare damaging variant were 36.8% among cases and 22.9% among controls (odds ratio, 2.0; 99% confidence interval, 0.5-7.3). No case had a variant in a known fetal anomaly gene. The proportion with variants in possibly embryonic lethal genes increased in case probands (odds ratio, 14.5; 99% confidence interval, 1.5-89.7); variants occurred in BAZ1A, FBN2, and TIMP2. CONCLUSION(S): Rare genetic variants in the conceptus may be a cause of chromosomally normal pregnancy loss. A larger sample is needed to estimate the magnitude of the association with precision and identify relevant biologic pathways.


Subject(s)
Abortion, Spontaneous/genetics , Chromosomes, Human , Loss of Function Mutation , Mutation, Missense , Abortion, Spontaneous/diagnosis , Case-Control Studies , Chromosomal Proteins, Non-Histone/genetics , DNA Mutational Analysis , Female , Fibrillin-2/genetics , Humans , Karyotype , Karyotyping , Pregnancy , Risk Assessment , Risk Factors , Tissue Inhibitor of Metalloproteinase-2/genetics , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...