Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 104(16): 165004, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-20482059

ABSTRACT

High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f(CI)) or an electrostatic ion cyclotron (EIC) wave just above f(CI) can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency.

2.
J Mol Biol ; 215(4): 607-22, 1990 Oct 20.
Article in English | MEDLINE | ID: mdl-2231722

ABSTRACT

We have designed a set of 17-residue synthetic peptides to be monomeric helices in aqueous solution. Circular dichrosim experiments indicate the presence of helical structure in aqueous solution at low temperature and low pH. The two-dimensional nuclear magnetic resonance results for one of the peptides show a segment of ten residues which clearly meets all of the criteria for the existence of helical structure at both 5 degrees C and 15 degrees C. The first four residues of the peptide are in a largely extended conformation. Calculations suggest that residues 5 through 14 are significantly helical at 5 degrees C. When the temperature is increased, circular dichroism spectra indicate that the helical content decreases. At 15 degrees C, the 3JN alpha coupling constants increase in the helical region, indicating an increase in motion or conformational averaging in the helical segment. None of the peptides has pH titration behavior consistent with salt bridge stabilization of helical conformation. Our data lend themselves to interpretation with the helix dipole model and specific side-chain interactions. When the N and C termini charges are removed the helical content of the peptides increases. The amount of helicity increases as the pH is lowered, due to the ionization of His16. Much of the helical stabilization appears to be due to a specific side-chain interaction between His16 and Tyr12.


Subject(s)
Peptides/chemistry , Amino Acid Sequence , Circular Dichroism , Hot Temperature , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Protein Conformation
3.
Proc Natl Acad Sci U S A ; 86(7): 2204-8, 1989 Apr.
Article in English | MEDLINE | ID: mdl-2928326

ABSTRACT

A proximity map showing the three-dimensional arrangement of 12 chemically defined points in actomyosin subfragment 1 is developed and roughly correlated with published electron microscope reconstruction of others. Several additional points and topological relationships in the primary polypeptide chain folding are assimilated into this model. Certain crosslinkings and distance change observations are interpreted as indicators of transmission of force/displacement between the nucleotide-binding and an actin-binding site--i.e., as indications of how energy is transduced in this system.


Subject(s)
Myosins/metabolism , Peptide Fragments/metabolism , Microscopy, Electron/methods , Models, Theoretical , Myosin Subfragments , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...