Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Neuro Oncol ; 26(4): 625-639, 2024 04 05.
Article in English | MEDLINE | ID: mdl-37936324

ABSTRACT

BACKGROUND: Glioblastomas have highly infiltrative growth patterns that contribute to recurrence and poor survival. Despite infiltration being a critical therapeutic target, no clinically useful therapies exist that counter glioblastoma invasion. Here, we report that inhibition of ataxia telangiectasia and Rad 3 related kinase (ATR) reduces invasion of glioblastoma cells through dysregulation of cytoskeletal networks and subsequent integrin trafficking. METHODS: Glioblastoma motility and invasion were assessed in vitro and in vivo in response to ATR inhibition (ATRi) and ATR overexpression using time-lapse microscopy, two orthotopic glioblastoma models, and intravital imaging. Disruption to cytoskeleton networks and endocytic processing were investigated via high-throughput, super-resolution and intravital imaging. RESULTS: High ATR expression was associated with significantly poorer survival in clinical datasets while histological, protein expression, and spatial transcriptomics using glioblastoma tumor specimens revealed higher ATR expression at infiltrative margins. Pharmacological inhibition with two different compounds and RNAi targeting of ATR opposed the invasion of glioblastoma, whereas overexpression of ATR drove migration. Subsequent investigation revealed that cytoskeletal dysregulation reduced macropinocytotic internalization of integrins at growth-cone-like structures, resulting in a tumor microtube retraction defect. The biological relevance and translational potential of these findings were confirmed using two orthotopic in vivo models of glioblastoma and intravital imaging. CONCLUSIONS: We demonstrate a novel role for ATR in determining invasion in glioblastoma cells and propose that pharmacological targeting of ATR could have far-reaching clinical benefits beyond radiosensitization.


Subject(s)
Glioblastoma , Humans , Glioblastoma/pathology , Integrins/metabolism , Cell Line, Tumor , Cytoskeleton/metabolism , Cytoskeleton/pathology , Neoplasm Invasiveness , Ataxia Telangiectasia Mutated Proteins/metabolism
2.
Curr Biol ; 33(9): 1704-1715.e3, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37001521

ABSTRACT

Negative chemotaxis, where eukaryotic cells migrate away from repellents, is important throughout biology, for example, in nervous system patterning and resolution of inflammation. However, the mechanisms by which molecules repel migrating cells are unknown. Here, we use predictive modeling and experiments with Dictyostelium cells to show that competition between different ligands that bind to the same receptor leads to effective chemorepulsion. 8-CPT-cAMP, widely described as a simple chemorepellent, is inactive on its own and only repels cells when it acts in combination with the attractant cAMP. If cells degrade either competing ligand, the pattern of migration becomes more complex; cells may be repelled in one part of a gradient but attracted elsewhere, leading to populations moving in different directions in the same assay or converging in an arbitrary place. More counterintuitively still, two chemicals that normally attract cells can become repellent when combined. Computational models of chemotaxis are now accurate enough to predict phenomena that have not been anticipated by experiments. We have used them to identify new mechanisms that drive reverse chemotaxis, which we have confirmed through experiments with real cells. These findings are important whenever multiple ligands compete for the same receptors.


Subject(s)
Chemotaxis , Dictyostelium , Chemotaxis/physiology , Chemotactic Factors/pharmacology , Chemotactic Factors/metabolism , Dictyostelium/metabolism , Eukaryotic Cells/metabolism
3.
Cells ; 10(12)2021 12 10.
Article in English | MEDLINE | ID: mdl-34943993

ABSTRACT

The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here, we report that the Abi subunit-but not Scar-is phosphorylated in response to extracellular signalling in Dictyostelium cells. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation-cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. Dictyostelium, in which Scar and Abi are both unphosphorylatable, can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.


Subject(s)
Dictyostelium/metabolism , Extracellular Space/metabolism , Protozoan Proteins/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Cell Adhesion/drug effects , Cell Movement/drug effects , Chemotactic Factors/pharmacology , Dictyostelium/drug effects , Mutation/genetics , Osmotic Pressure/drug effects , Phosphorylation/drug effects , Protozoan Proteins/genetics , Pseudopodia/drug effects , Pseudopodia/metabolism , Signal Transduction/drug effects
4.
J Cell Biol ; 220(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33978708

ABSTRACT

Polarity is essential for diverse functions in many cell types. Establishing polarity requires targeting a network of specific signaling and cytoskeleton molecules to different subregions of the cell, yet the full complement of polarity regulators and how their activities are integrated over space and time to form morphologically and functionally distinct domains remain to be uncovered. Here, by using the model system Dictyostelium and exploiting the characteristic chemoattractant-stimulated translocation of polarly distributed molecules, we developed a proteomic screening approach, through which we identified a leucine-rich repeat domain-containing protein we named Leep1 as a novel polarity regulator. We combined imaging, biochemical, and phenotypic analyses to demonstrate that Leep1 localizes selectively at the leading edge of cells by binding to PIP3, where it modulates pseudopod and macropinocytic cup dynamics by negatively regulating the Scar/WAVE complex. The spatiotemporal coordination of PIP3 signaling, Leep1, and the Scar/WAVE complex provides a cellular mechanism for organizing protrusive structures at the leading edge.


Subject(s)
Actins/economics , Cell Polarity/genetics , Pinocytosis/genetics , Protozoan Proteins/genetics , Actins/genetics , Cell Movement/genetics , Chemotaxis/genetics , Cytoplasm/genetics , Dictyostelium/genetics , Pseudopodia/genetics , Signal Transduction/genetics
5.
Science ; 369(6507)2020 08 28.
Article in English | MEDLINE | ID: mdl-32855311

ABSTRACT

During development and metastasis, cells migrate large distances through complex environments. Migration is often guided by chemotaxis, but simple chemoattractant gradients between a source and sink cannot direct cells over such ranges. We describe how self-generated gradients, created by cells locally degrading attractant, allow single cells to navigate long, tortuous paths and make accurate choices between live channels and dead ends. This allows cells to solve complex mazes efficiently. Cells' accuracy at finding live channels was determined by attractant diffusivity, cell speed, and path complexity. Manipulating these parameters directed cells in mathematically predictable ways; specific combinations can even actively misdirect them. We propose that the length and complexity of many long-range migratory processes, including inflammation and germ cell migration, means that self-generated gradients are needed for successful navigation.


Subject(s)
Chemotactic Factors/metabolism , Chemotaxis , Eukaryotic Cells/physiology , Dictyostelium , Humans , Neoplasm Metastasis
6.
PLoS Biol ; 18(8): e3000774, 2020 08.
Article in English | MEDLINE | ID: mdl-32745097

ABSTRACT

The Scar/WAVE complex is the principal catalyst of pseudopod and lamellipod formation. Here we show that Scar/WAVE's proline-rich domain is polyphosphorylated after the complex is activated. Blocking Scar/WAVE activation stops phosphorylation in both Dictyostelium and mammalian cells, implying that phosphorylation modulates pseudopods after they have been formed, rather than controlling whether they are initiated. Unexpectedly, phosphorylation is not promoted by chemotactic signaling but is greatly stimulated by cell:substrate adhesion and diminished when cells deadhere. Phosphorylation-deficient or phosphomimetic Scar/WAVE mutants are both normally functional and rescue the phenotype of knockout cells, demonstrating that phosphorylation is dispensable for activation and actin regulation. However, pseudopods and patches of phosphorylation-deficient Scar/WAVE last substantially longer in mutants, altering the dynamics and size of pseudopods and lamellipods and thus changing migration speed. Scar/WAVE phosphorylation does not require ERK2 in Dictyostelium or mammalian cells. However, the MAPKKK homologue SepA contributes substantially-sepA mutants have less steady-state phosphorylation, which does not increase in response to adhesion. The mutants also behave similarly to cells expressing phosphorylation-deficient Scar, with longer-lived pseudopods and patches of Scar recruitment. We conclude that pseudopod engagement with substratum is more important than extracellular signals at regulating Scar/WAVE's activity and that phosphorylation acts as a pseudopod timer by promoting Scar/WAVE turnover.


Subject(s)
Dictyostelium/genetics , MAP Kinase Kinase Kinase 3/genetics , Protozoan Proteins/genetics , Pseudopodia/metabolism , Wiskott-Aldrich Syndrome Protein Family/genetics , Animals , CRISPR-Cas Systems , Cell Adhesion , Cell Line, Tumor , Chemotaxis/genetics , Dictyostelium/metabolism , Dictyostelium/ultrastructure , Gene Editing/methods , Gene Expression Regulation , MAP Kinase Kinase Kinase 3/metabolism , Melanocytes/metabolism , Melanocytes/ultrastructure , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mutation , NIH 3T3 Cells , Phenotype , Phosphorylation , Ploidies , Protozoan Proteins/metabolism , Pseudopodia/genetics , Pseudopodia/ultrastructure , Wiskott-Aldrich Syndrome Protein Family/metabolism
7.
Curr Biol ; 29(24): 4169-4182.e4, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31786060

ABSTRACT

Efficient motility requires polarized cells, with pseudopods at the front and a retracting rear. Polarization is maintained by restricting the pseudopod catalyst, active Rac, to the front. Here, we show that the actin nucleation-promoting factor Wiskott-Aldrich syndrome protein (WASP) contributes to maintenance of front-rear polarity by controlling localization and cellular levels of active Rac. Dictyostelium cells lacking WASP inappropriately activate Rac at the rear, which affects their polarity and speed. WASP's Cdc42 and Rac interacting binding ("CRIB") motif has been thought to be essential for its activation. However, we show that the CRIB motif's biological role is unexpectedly complex. WASP CRIB mutants are no longer able to restrict Rac activity to the front, and cannot generate new pseudopods when SCAR/WAVE is absent. Overall levels of Rac activity also increase when WASP is unable to bind to Rac. However, WASP without a functional CRIB domain localizes normally at clathrin pits during endocytosis, and activates Arp2/3 complex. Similarly, chemical inhibition of Rac does not affect WASP localization or activation at sites of endocytosis. Thus, the interaction between small GTPases and WASP is more complex than previously thought-Rac regulates a subset of WASP functions, but WASP reciprocally restricts active Rac through its CRIB motif.


Subject(s)
Cell Polarity/physiology , Proto-Oncogene Proteins c-akt/metabolism , Wiskott-Aldrich Syndrome Protein/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Cell Movement/physiology , Clathrin/metabolism , Dictyostelium/metabolism , Endocytosis , Humans , Protein Binding , Protein Interaction Domains and Motifs/physiology , Proto-Oncogene Proteins c-akt/physiology , Pseudopodia/metabolism , Wiskott-Aldrich Syndrome Protein/physiology
8.
Dev Cell ; 51(4): 431-445.e7, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31668663

ABSTRACT

Pancreatic ductal adenocarcinoma is one of the most invasive and metastatic cancers and has a dismal 5-year survival rate. We show that N-WASP drives pancreatic cancer metastasis, with roles in both chemotaxis and matrix remodeling. lysophosphatidic acid, a signaling lipid abundant in blood and ascites fluid, is both a mitogen and chemoattractant for cancer cells. Pancreatic cancer cells break lysophosphatidic acid down as they respond to it, setting up a self-generated gradient driving tumor egress. N-WASP-depleted cells do not recognize lysophosphatidic acid gradients, leading to altered RhoA activation, decreased contractility and traction forces, and reduced metastasis. We describe a signaling loop whereby N-WASP and the endocytic adapter SNX18 promote lysophosphatidic acid-induced RhoA-mediated contractility and force generation by controlling lysophosphatidic acid receptor recycling and preventing degradation. This chemotactic loop drives collagen remodeling, tumor invasion, and metastasis and could be an important target against pancreatic cancer spread.


Subject(s)
Lysophospholipids/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Receptors, Lysophosphatidic Acid/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Movement/physiology , Chemotaxis , Female , Humans , Male , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Protein Transport , Rats , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/isolation & purification , Signal Transduction , Sorting Nexins/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics , rhoA GTP-Binding Protein/metabolism
9.
J Vis Exp ; (143)2019 01 25.
Article in English | MEDLINE | ID: mdl-30735174

ABSTRACT

Dictyostelium discoideum is an intriguing model organism for the study of cell differentiation processes during development, cell signaling, and other important cellular biology questions. The technologies available to genetically manipulate Dictyostelium cells are well-developed. Transfections can be performed using different selectable markers and marker re-cycling, including homologous recombination and insertional mutagenesis. This is supported by a well-annotated genome. However, these approaches are optimized for axenic cell lines growing in liquid cultures and are difficult to apply to non-axenic wild-type cells, which feed only on bacteria. The mutations that are present in axenic strains disturb Ras signaling, causing excessive macropinocytosis required for feeding, and impair cell migration, which confounds the interpretation of signal transduction and chemotaxis experiments in those strains. Earlier attempts to genetically manipulate non-axenic cells have lacked efficiency and required complex experimental procedures. We have developed a simple transfection protocol that, for the first time, overcomes these limitations. Those series of large improvements to Dictyostelium molecular genetics allow wild-type cells to be manipulated as easily as standard laboratory strains. In addition to the advantages for studying uncorrupted signaling and motility processes, mutants that disrupt macropinocytosis-based growth can now be readily isolated. Furthermore, the entire transfection workflow is greatly accelerated, with recombinant cells that can be generated in days rather than weeks. Another advantage is that molecular genetics can further be performed with freshly isolated wild-type Dictyostelium samples from the environment. This can help to extend the scope of approaches used in these research areas.


Subject(s)
Bacteria/growth & development , Chemotaxis , Dictyostelium/growth & development , Genetic Engineering/methods , Pinocytosis/physiology , Bacteria/genetics , Dictyostelium/genetics , Homologous Recombination , Mutagenesis, Insertional , Mutation , Signal Transduction
10.
Curr Biol ; 28(22): 3674-3684.e6, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30393033

ABSTRACT

Cell migration often involves the formation of sheet-like lamellipodia generated by branched actin filaments. The branches are initiated when Arp2/3 complex [1] is activated by WAVE regulatory complex (WRC) downstream of small GTPases of the Rac family [2]. Recent structural studies defined two independent Rac binding sites on WRC within the Sra-1/PIR121 subunit of the pentameric WRC [3, 4], but the functions of these sites in vivo have remained unknown. Here we dissect the mechanism of WRC activation and the in vivo relevance of distinct Rac binding sites on Sra-1, using CRISPR/Cas9-mediated gene disruption of Sra-1 and its paralog PIR121 in murine B16-F1 cells combined with Sra-1 mutant rescue. We show that the A site, positioned adjacent to the binding region of WAVE-WCA mediating actin and Arp2/3 complex binding, is the main site for allosteric activation of WRC. In contrast, the D site toward the C terminus is dispensable for WRC activation but required for optimal lamellipodium morphology and function. These results were confirmed in evolutionarily distant Dictyostelium cells. Moreover, the phenotype seen in D site mutants was recapitulated in Rac1 E31 and F37 mutants; we conclude these residues are important for Rac-D site interaction. Finally, constitutively activated WRC was able to induce lamellipodia even after both Rac interaction sites were lost, showing that Rac interaction is not essential for membrane recruitment. Our data establish that physical interaction with Rac is required for WRC activation, in particular through the A site, but is not mandatory for WRC accumulation in the lamellipodium.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Dictyostelium/metabolism , Multiprotein Complexes/metabolism , Pseudopodia/physiology , rac1 GTP-Binding Protein/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Cell Movement , Dictyostelium/cytology , Dictyostelium/genetics , Mice , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/physiology , Neuropeptides/antagonists & inhibitors , Neuropeptides/metabolism , Protein Conformation , Tumor Cells, Cultured , Wiskott-Aldrich Syndrome Protein Family/chemistry , Wiskott-Aldrich Syndrome Protein Family/genetics , Wiskott-Aldrich Syndrome Protein Family/metabolism , rac GTP-Binding Proteins/antagonists & inhibitors , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/antagonists & inhibitors , RAC2 GTP-Binding Protein
11.
Nat Cell Biol ; 20(10): 1159-1171, 2018 10.
Article in English | MEDLINE | ID: mdl-30250061

ABSTRACT

Actin-based protrusions are reinforced through positive feedback, but it is unclear what restricts their size, or limits positive signals when they retract or split. We identify an evolutionarily conserved regulator of actin-based protrusion: CYRI (CYFIP-related Rac interactor) also known as Fam49 (family of unknown function 49). CYRI binds activated Rac1 via a domain of unknown function (DUF1394) shared with CYFIP, defining DUF1394 as a Rac1-binding module. CYRI-depleted cells have broad lamellipodia enriched in Scar/WAVE, but reduced protrusion-retraction dynamics. Pseudopods induced by optogenetic Rac1 activation in CYRI-depleted cells are larger and longer lived. Conversely, CYRI overexpression suppresses recruitment of active Scar/WAVE to the cell edge, resulting in short-lived, unproductive protrusions. CYRI thus focuses protrusion signals and regulates pseudopod complexity by inhibiting Scar/WAVE-induced actin polymerization. It thus behaves like a 'local inhibitor' as predicted in widely accepted mathematical models, but not previously identified in cells. CYRI therefore regulates chemotaxis, cell migration and epithelial polarization by controlling the polarity and plasticity of protrusions.


Subject(s)
Cell Movement , Intracellular Signaling Peptides and Proteins/metabolism , Pseudopodia/metabolism , rac1 GTP-Binding Protein/metabolism , Actins/genetics , Actins/metabolism , Animals , COS Cells , Cell Line, Tumor , Chemotaxis/genetics , Chlorocebus aethiops , Dogs , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Madin Darby Canine Kidney Cells , Polymerization , Protein Binding , Pseudopodia/genetics , Signal Transduction/genetics , rac1 GTP-Binding Protein/genetics
12.
PLoS One ; 13(5): e0196809, 2018.
Article in English | MEDLINE | ID: mdl-29847546

ABSTRACT

Dictyostelium has a mature technology for molecular-genetic manipulation based around transfection using several different selectable markers, marker re-cycling, homologous recombination and insertional mutagenesis, all supported by a well-annotated genome. However this technology is optimized for mutant, axenic cells that, unlike non-axenic wild type, can grow in liquid medium. There is a pressing need for methods to manipulate wild type cells and ones with defects in macropinocytosis, neither of which can grow in liquid media. Here we present a panel of molecular genetic techniques based on the selection of Dictyostelium transfectants by growth on bacteria rather than liquid media. As well as extending the range of strains that can be manipulated, these techniques are faster than conventional methods, often giving usable numbers of transfected cells within a few days. The methods and plasmids described here allow efficient transfection with extrachromosomal vectors, as well as chromosomal integration at a 'safe haven' for relatively uniform cell-to-cell expression, efficient gene knock-in and knock-out and an inducible expression system. We have thus created a complete new system for the genetic manipulation of Dictyostelium cells that no longer requires cell feeding on liquid media.


Subject(s)
Dictyostelium/genetics , Gene Knock-In Techniques/methods , Genetic Engineering/methods , Genetic Vectors/genetics , Homologous Recombination/genetics , Mutagenesis, Insertional/genetics , Mutation/genetics , Pinocytosis/genetics , Plasmids/genetics , Transfection/methods
13.
EMBO J ; 37(13)2018 07 02.
Article in English | MEDLINE | ID: mdl-29844016

ABSTRACT

The Arp2/3 complex generates branched actin networks that exert pushing forces onto different cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and thereby fission transport intermediates containing endocytosed receptors, such as α5ß1 integrins. How WASH complexes are assembled in the cell is unknown. Here, we identify the small coiled-coil protein HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of CCDC53, WASH, and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the ternary WASH complex for WASH functions. HSBP1 is required for the development of focal adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes and with poor prognosis for patients.


Subject(s)
Centrosome/metabolism , Heat-Shock Proteins/metabolism , Microfilament Proteins/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Humans , Models, Molecular , Prognosis
14.
J Cell Biol ; 217(2): 701-714, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29191847

ABSTRACT

Actin pseudopods induced by SCAR/WAVE drive normal migration and chemotaxis in eukaryotic cells. Cells can also migrate using blebs, in which the edge is driven forward by hydrostatic pressure instead of actin. In Dictyostelium discoideum, loss of SCAR is compensated by WASP moving to the leading edge to generate morphologically normal pseudopods. Here we use an inducible double knockout to show that cells lacking both SCAR and WASP are unable to grow, make pseudopods or, unexpectedly, migrate using blebs. Remarkably, amounts and dynamics of actin polymerization are normal. Pseudopods are replaced in double SCAR/WASP mutants by aberrant filopods, induced by the formin dDia2. Further disruption of the gene for dDia2 restores cells' ability to initiate blebs and thus migrate, though pseudopods are still lost. Triple knockout cells still contain near-normal F-actin levels. This work shows that SCAR, WASP, and dDia2 compete for actin. Loss of SCAR and WASP causes excessive dDia2 activity, maintaining F-actin levels but blocking pseudopod and bleb formation and migration.


Subject(s)
Cell Movement , Dictyostelium/metabolism , Protozoan Proteins/metabolism , Pseudopodia/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Cells, Cultured , Dictyostelium/cytology , Mutation , Protozoan Proteins/genetics , Wiskott-Aldrich Syndrome Protein Family/genetics
15.
J Cell Sci ; 130(20): 3455-3466, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28871044

ABSTRACT

Melanoma cells steer out of tumours using self-generated lysophosphatidic acid (LPA) gradients. The cells break down LPA, which is present at high levels around the tumours, creating a dynamic gradient that is low in the tumour and high outside. They then migrate up this gradient, creating a complex and evolving outward chemotactic stimulus. Here, we introduce a new assay for self-generated chemotaxis, and show that raising LPA levels causes a delay in migration rather than loss of chemotactic efficiency. Knockdown of the lipid phosphatase LPP3 - but not of its homologues LPP1 or LPP2 - diminishes the cell's ability to break down LPA. This is specific for chemotactically active LPAs, such as the 18:1 and 20:4 species. Inhibition of autotaxin-mediated LPA production does not diminish outward chemotaxis, but loss of LPP3-mediated LPA breakdown blocks it. Similarly, in both 2D and 3D invasion assays, knockdown of LPP3 diminishes the ability of melanoma cells to invade. Our results demonstrate that LPP3 is the key enzyme in the breakdown of LPA by melanoma cells, and confirm the importance of attractant breakdown in LPA-mediated cell steering.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Lysophospholipids/metabolism , Melanoma/metabolism , Phosphatidate Phosphatase/physiology , Skin Neoplasms/metabolism , Cell Line, Tumor , Chemotaxis , Humans , Melanoma/pathology , Neoplasm Invasiveness , Skin Neoplasms/pathology
16.
J Cell Sci ; 130(10): 1785-1795, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28424231

ABSTRACT

The steps leading to constitutive exocytosis are poorly understood. In Dictyostelium WASH complex mutants, exocytosis is blocked, so cells that take up fluorescent dextran from the medium retain it and remain fluorescent. Here, we establish a FACS-based method to select cells that retain fluorescent dextran, allowing identification of mutants with disrupted exocytosis. Screening a pool of random mutants identified members of the WASH complex, as expected, and multiple mutants in the conserved HEAT-repeat-containing protein Mroh1. In mroh1 mutants, endosomes develop normally until the stage where lysosomes neutralize to postlysosomes, but thereafter the WASH complex is recycled inefficiently, and subsequent exocytosis is substantially delayed. Mroh1 protein localizes to lysosomes in mammalian and Dictyostelium cells. In Dictyostelium, it accumulates on lysosomes as they mature and is removed, together with the WASH complex, shortly before the postlysosomes are exocytosed. WASH-generated F-actin is required for correct subcellular localization; in WASH complex mutants, and immediately after latrunculin treatment, Mroh1 relocalizes from the cytoplasm to small vesicles. Thus, Mroh1 is involved in a late and hitherto undefined actin-dependent step in exocytosis.


Subject(s)
Actins/metabolism , Dictyostelium/metabolism , Lysosomes/metabolism , Protozoan Proteins/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Amino Acid Sequence , Animals , Behavior, Animal , Endocytosis , Exocytosis , Fluorescence Recovery After Photobleaching , Green Fluorescent Proteins/metabolism , Mutation/genetics , Phenotype , Polymerization , Protein Transport , Protozoan Proteins/chemistry , Vacuolar Proton-Translocating ATPases/metabolism
17.
Mol Cell Biol ; 36(10): 1464-79, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26951199

ABSTRACT

Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1(-) mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.


Subject(s)
Dictyostelium/physiology , Inositol/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Autophagy , Cytokinesis , Dictyostelium/enzymology , Dictyostelium/genetics , Intramolecular Lyases/chemistry , Metabolism , Mutation , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
18.
Eukaryot Cell ; 12(11): 1509-16, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24036345

ABSTRACT

The SCAR/WAVE complex drives actin-based protrusion, cell migration, and cell separation during cytokinesis. However, the contribution of the individual complex members to the activity of the whole remains a mystery. This is primarily because complex members depend on one another for stability, which limits the scope for experimental manipulation. Several studies suggest that Abi, a relatively small complex member, connects signaling to SCAR/WAVE complex localization and activation through its polyproline C-terminal tail. We generated a deletion series of the Dictyostelium discoideum Abi to investigate its exact role in regulation of the SCAR complex and identified a minimal fragment that would stabilize the complex. Surprisingly, loss of either the N terminus of Abi or the C-terminal polyproline tail conferred no detectable defect in complex recruitment to the leading edge or the formation of pseudopods. A fragment containing approximately 20% Abi--and none of the sites that couple to known signaling pathways--allowed the SCAR complex to function with normal localization and kinetics. However, expression of N-terminal Abi deletions exacerbated the cytokinesis defect of the Dictyostelium abi mutant, which was earlier shown to be caused by the inappropriate activation of SCAR. This demonstrates, unexpectedly, that Abi does not mediate the SCAR complex's ability to make pseudopods, beyond its role in complex stability. Instead, we propose that Abi has a modulatory role when the SCAR complex is activated through other mechanisms.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Dictyostelium/metabolism , Protozoan Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Cell Movement , Cytokinesis , Dictyostelium/cytology , Dictyostelium/genetics , Dictyostelium/physiology , Gene Deletion , Molecular Sequence Data , Peptides/chemistry , Protein Binding , Protein Stability , Protein Structure, Tertiary , Protein Transport , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Pseudopodia/metabolism
19.
Methods Mol Biol ; 1046: 307-21, 2013.
Article in English | MEDLINE | ID: mdl-23868596

ABSTRACT

Direct visualization chambers are considered the gold standard for measuring and analyzing chemotactic responses, because they allow detailed analysis of cellular behavior during the process of chemotaxis. We have previously described the Insall chamber, an improved chamber for measuring cancer cell chemotaxis. Here, we describe in detail how this system can be used to perform two key assays for both fast- and slow-moving mammalian and nonmammalian cell types. This allows for the detailed analysis of chemotactic responses in linear gradients at the levels of both overall cell behavior and subcellular dynamics.


Subject(s)
Chemotaxis , Microscopy/methods , Molecular Biology/methods , Animals , Cell Line, Tumor , Dictyostelium/cytology , Diffusion Chambers, Culture , Humans , Neoplasms/genetics , Neoplasms/pathology
20.
Dev Cell ; 24(2): 169-81, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23369714

ABSTRACT

WASH causes actin to polymerize on vesicles involved in retrograde traffic and exocytosis. It is found within a regulatory complex, but the physiological roles of the other four members are unknown. Here we present genetic analysis of the subunits' individual functions in Dictyostelium. Mutants in each subunit are completely blocked in exocytosis. All subunits except FAM21 are required to drive actin assembly on lysosomes. Without actin, lysosomes never recycle vacuolar-type H(+)-adenosine triphosphatase (V-ATPase) or neutralize to form postlysosomes. However, in FAM21 knockout lysosomes, WASH generates excessive, dynamic streams of actin. These successfully remove V-ATPase, neutralize, and form huge postlysosomes. The distinction between WASH and FAM21 phenotypes is conserved in human cells. Thus, FAM21 and WASH act at different steps of a cyclical pathway in which FAM21 mediates recycling of the complex back to acidic lysosomes. Recycling is driven by FAM21's interaction with capping protein, which couples the WASH complex to dynamic actin on vesicles.


Subject(s)
Actin Capping Proteins/metabolism , Dictyostelium/metabolism , Microfilament Proteins/metabolism , Protozoan Proteins/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Vesicular Transport Proteins/metabolism , Actins/metabolism , Cell Line, Tumor , Dictyostelium/genetics , Exocytosis , Humans , Lysosomes/metabolism , Microfilament Proteins/genetics , Mutation , Protozoan Proteins/genetics , RNA Interference , RNA, Small Interfering , Vesicular Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...