Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 671487, 2021.
Article in English | MEDLINE | ID: mdl-34539687

ABSTRACT

Specialized metabolism is an evolutionary answer that fortifies plants against a wide spectrum of (a) biotic challenges. A plethora of diversified compounds can be found in the plant kingdom and often constitute the basis of human pharmacopeia. Olive trees (Olea europaea) produce an unusual type of secoiridoids known as oleosides with promising pharmaceutical activities. Here, we transiently silenced oleuropein ß-glucosidase (OeGLU), an enzyme engaged in the biosynthetic pathway of secoiridoids in the olive trees. Reduction of OeGLU transcripts resulted in the absence of both upstream and downstream secoiridoids in planta, revealing a regulatory loop mechanism that bypasses the flux of precursor compounds toward the branch of secoiridoid biosynthesis. Our findings highlight that OeGLU could serve as a molecular target to regulate the bioactive secoiridoids in olive oils.

2.
Methods Mol Biol ; 2172: 165-182, 2020.
Article in English | MEDLINE | ID: mdl-32557369

ABSTRACT

Research on gene functions in non-model tree species is hampered by a number of difficulties such as time-consuming genetic transformation protocols and extended period for the production of healthy transformed offspring, among others. Virus-induced gene silencing (VIGS) is an alternative approach to transiently knock out an endogenous gene of interest (GOI) by the introduction of viral sequences encompassing a fragment of the GOI and to exploit the posttranscriptional gene silencing (PTGS) mechanism of the plant, thus triggering silencing of the GOI. Here we describe the successful application of Tobacco rattle virus (TRV)-mediated VIGS through agroinoculation of olive plantlets. This methodology is expected to serve as a fast tracking and powerful tool enabling researchers from diversified fields to perform functional genomic analyses in the olive tree.


Subject(s)
Olea/genetics , Oleaceae/genetics , Plant Viruses/genetics , Plant Viruses/pathogenicity , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Gene Silencing/physiology , Olea/virology , Oleaceae/virology , RNA Interference
3.
Plant Physiol ; 174(3): 1371-1383, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28483880

ABSTRACT

Oleuropein, a terpene-derived glycosylated secoiridoid biosynthesized exclusively by members of the Oleaceae family, is involved in a two-component defense system comprising a ß-glucosidase that activates oleuropein into a toxic glutaraldehyde-like structure. Oleuropein and its deglycosylated derivatives have high pharmaceutical interest. In this study we determined that the in planta heterologous expressed OeGLU, an oleuropein-specific ß-glucosidase from olive (Olea europaea), had enzymatic kinetics similar to the olive native enzyme. The C terminus encompassing the nuclear localization signal sequesters the enzyme in the nucleus, and predetermines the protein-protein recognition and homodimerization. Biochemical analysis revealed that OeGLU is a homomultimer with high Mr In silico prediction modeling of the complex structure and bimolecular fluorescence complementation analyses revealed that the C terminus of OeGLU is essential for the proper assembly of an octameric form, a key conformational feature that determines the activity of the enzyme. Our results demonstrate that intrinsic characteristics of the OeGLU ensure separation from oleuropein and keep the dual-partner defensive system conditionally inactive. Upon cell destruction, the dual-partner defense system is activated and olive massively releases the arsenal of defense.


Subject(s)
Cell Nucleus/enzymology , Iridoids/chemistry , Iridoids/metabolism , Olea/enzymology , Protein Folding , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism , Computer Simulation , Glycosylation , Iridoid Glucosides , Kinetics , Nuclear Localization Signals , Protein Binding , Protein Domains , Protein Multimerization , Protein Structure, Quaternary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...