Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Fish Biol ; 91(1): 126-143, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28555871

ABSTRACT

This study investigates zona pellucida (ZP) ultrastructure in fertilized eggs of annual killifishes (suborder Aplocheiloidei), a group of highly specialized fishes that are able to survive desiccation for several weeks to months before they hatch. Little is known about ZP or chorionic ultrastructure sustaining these life-history modes, so scanning electron microscopy (SEM) was used to describe this trait in a large number of aplocheiloids with a focus on the family Rivulidae and the genus Hypsolebias. New images of ZP ultrastructure for 52 aplocheiloid species are provided, more than doubling the number characterized thus far. The evolution of chorionic structure within this group is studied using these new data. Characters were coded into a morphological matrix and optimized onto a consensus phylogeny to assess phylogenetic signal and reconstruct ancestral character states. Although ZP characters seem highly homoplastic and exhibit a large amount of structural convergence among lineages, aplocheiloid killifishes have evolved a number of unique structures associated with the chorion. Some annual species seem to have lost long filaments because eggs are deposited in the soil instead of being adhered to aquatic plants.


Subject(s)
Killifishes/physiology , Zona Pellucida/physiology , Zygote/cytology , Zygote/physiology , Animals , Female
2.
Sci Rep ; 6: 34887, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27713561

ABSTRACT

Sensory coding relies on ensembles of co-active neurons, but these ensembles change from trial to trial of the same stimulus. This is due in part to wide variability in the responsiveness of neurons within these ensembles, with some neurons responding regularly to a stimulus while others respond inconsistently. The specific functional properties that cause neurons to respond more or less consistently have not been thoroughly explored. Here, we have examined neuronal ensembles in the zebrafish tectum responsive to repeated presentations of a visual stimulus, and have explored how these populations change when the orientation or brightness of the stimulus is altered. We found a continuum of response probabilities across the neurons in the visual ensembles, with the most responsive neurons focused toward the spatial centre of the ensemble. As the visual stimulus was made dimmer, these neurons remained active, suggesting higher overall responsiveness. However, these cells appeared to represent the most consistent end of a continuum, rather than a functionally distinct "core" of highly responsive neurons. Reliably responsive cells were broadly tuned to a range of stimulus orientations suggesting that, at least for this stimulus property, tight stimulus tuning was not responsible for their consistent responses.


Subject(s)
Superior Colliculi/cytology , Superior Colliculi/physiology , Zebrafish/physiology , Animals , Animals, Genetically Modified , Larva , Neurons/physiology , Photic Stimulation/methods , Zebrafish/genetics
3.
J Med Chem ; 46(13): 2683-96, 2003 Jun 19.
Article in English | MEDLINE | ID: mdl-12801232

ABSTRACT

Previous data have shown that RXR-selective agonists (e.g., 3 and 4) are insulin sensitizers in rodent models of non-insulin-dependent diabetes mellitus (NIDDM). Unfortunately, they also produce dramatic increases in triglycerides and profound suppression of the thyroid hormone axis. Here we describe the design and synthesis of new RXR modulators that retain the insulin-sensitizing activity of RXR agonists but produce substantially reduced side effects. These molecules bind selectively and with high affinity to RXR and, unlike RXR agonists, do not activate RXR homodimers. To further evaluate the antidiabetic activity of these RXR modulators, we have designed a concise and systematic structure-activity relationship around the 2E,4E,6Z-7-aryl-3-methylocta-2,4,6-trienoic acid scaffold. Selected compounds have been evaluated using insulin-resistant rodents (db/db mice) to characterize effects on glucose homeostasis. Our studies demonstrate the effectiveness of RXR modulators in lowering plasma glucose in the db/db mouse model.


Subject(s)
Caprylates/chemical synthesis , Diabetes Mellitus, Type 2/blood , Hypoglycemic Agents/chemical synthesis , Receptors, Retinoic Acid/drug effects , Transcription Factors/drug effects , Animals , Blood Glucose/analysis , Caprylates/chemistry , Caprylates/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Insulin Resistance , Male , Mice , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptors, Retinoic Acid/metabolism , Retinoid X Receptors , Structure-Activity Relationship , Transcription Factors/metabolism
4.
Structure ; 7(2): 119-30, 1999 Feb 15.
Article in English | MEDLINE | ID: mdl-10368280

ABSTRACT

BACKGROUND: Haem-containing proteins are directly involved in electron transfer as well as in enzymatic functions. The nine-haem cytochrome c (9Hcc), previously described as having 12 haem groups, was isolated from cells of Desulfovibrio desulfuricans ATCC 27774, grown under both nitrate- and sulphate-respiring conditions. RESULTS: Models for the primary and three-dimensional structures of this cytochrome, containing 292 amino acid residues and nine haem groups, were derived using the multiple wavelength anomalous dispersion phasing method and refined using 1.8 A diffraction data to an R value of 17.0%. The nine haem groups are arranged into two tetrahaem clusters, with Fe-Fe distances and local protein fold similar to tetrahaem cytochromes c3, while the extra haem is located asymmetrically between the two clusters. CONCLUSIONS: This is the first known three-dimensional structure in which multiple copies of a tetrahaem cytochrome c3-like fold are present in the same polypeptide chain. Sequence homology was found between this cytochrome and the C-terminal region (residues 229-514) of the high molecular weight cytochrome c from Desulfovibrio vulgaris Hildenborough (DvH Hmc). A new haem arrangement in domains III and IV of DvH Hmc is proposed. Kinetic experiments showed that 9Hcc can be reduced by the [NiFe] hydrogenase from D. desulfuricans ATCC 27774, but that this reduction is faster in the presence of tetrahaem cytochrome c3. As Hmc has never been found in D. desulfuricans ATCC 27774, we propose that 9Hcc replaces it in this organism and is therefore probably involved in electron transfer across the membrane.


Subject(s)
Cytochrome c Group/chemistry , Desulfovibrio/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Crystallography, X-Ray , Electron Transport , Heme/chemistry , Hemeproteins/chemistry , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid
5.
Acta Crystallogr D Biol Crystallogr ; 55(Pt 3): 631-43, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10089459

ABSTRACT

The enzyme hydroxymethylbilane synthase (HMBS, E.C. 4.3.1.8) catalyzes the conversion of porphobilinogen into hydroxymethylbilane, a key intermediate for the biosynthesis of heme, chlorophylls, vitamin B12 and related macrocycles. The enzyme is found in all organisms, except viruses. The crystal structure of the selenomethionine-labelled enzyme ([SeMet]HMBS) from Escherichia coli has been solved by the multi-wavelength anomalous dispersion (MAD) experimental method using the Daresbury SRS station 9.5. In addition, [SeMet]HMBS has been studied by MAD at the Grenoble ESRF MAD beamline BM14 (BL19) and this work is described especially with respect to the use of the ESRF CCD detector. The structure at ambient temperature has been refined, the R factor being 16.8% at 2. 4 A resolution. The dipyrromethane cofactor of the enzyme is preserved in its reduced form in the crystal and its geometrical shape is in full agreement with the crystal structures of authentic dipyrromethanes. Proximal to the reactive C atom of the reduced cofactor, spherical density is seen consistent with there being a water molecule ideally placed to take part in the final step of the enzyme reaction cycle. Intriguingly, the loop with residues 47-58 is not ordered in the structure of this form of the enzyme, which carries no substrate. Direct experimental study of the active enzyme is now feasible using time-resolved Laue diffraction and freeze-trapping, building on the structural work described here as the foundation.


Subject(s)
Hydroxymethylbilane Synthase/chemistry , Selenomethionine/chemistry , Binding Sites , Crystallography, X-Ray , Data Collection , Models, Molecular , Protein Conformation , Recombinant Proteins/chemistry , Selenium/chemistry , Temperature
6.
J Synchrotron Radiat ; 4(Pt 2): 67-77, 1997 Mar 01.
Article in English | MEDLINE | ID: mdl-16699210

ABSTRACT

Charge-coupled device (CCD)-based X-ray detectors allow data to be collected much more quickly (approximately 10 times) than with current on-line imaging-plate systems. At the ESRF, X-ray image intensifier/CCD detector systems have been developed. These have great potential as fast read-out detectors for macromolecular and other forms of crystallography. They are relatively large sensitive X-ray detectors but have two inherent weaknesses: convex detection surfaces leading to spatial distortion and non-uniformity of intensity response, and susceptibility to small changes in magnetic fields. A large improvement has been made to the accuracy obtained by non-uniformity of response calibration and correction, using fluorescence from doped lithium borate glasses. Monochromatic macromolecular crystallography demonstration experiments with external user groups have shown that high-quality results may be obtained under real experimental conditions.

7.
Radiol Technol ; 68(4): 332-6, 1997.
Article in English | MEDLINE | ID: mdl-9085417

ABSTRACT

This article presents a fictitious case study to demonstrate a model of problem solving. In the case study, a student threatens legal action when she is dismissed from the radiography program due to her failing grade in a clinical education course. The theoretical framework of the classical model of decision making is reviewed and applied to the problem. Legal precedents are examined, a solution is proposed, and recommendations are provided to reduce the likelihood of future legal actions.


Subject(s)
Civil Rights , Clinical Competence/legislation & jurisprudence , Students, Health Occupations/legislation & jurisprudence , Technology, Radiologic/education , Humans
8.
Structure ; 4(11): 1303-15, 1996 Nov 15.
Article in English | MEDLINE | ID: mdl-8939754

ABSTRACT

BACKGROUND: [corrected] Aldolases catalyze a variety of condensation and cleavage reactions, with exquisite control on the stereochemistry. These enzymes, therefore, are attractive catalysts for synthetic chemistry. There are two classes of aldolase: class I aldolases utilize Schiff base formation with an active-site lysine whilst class II enzymes require a divalent metal ion, in particular zinc. Fructose-1,6-bisphosphate aldolase (FBP-aldolase) is used in gluconeogenesis and glycolysis; the enzyme controls the condensation of dihydroxyacetone phosphate with glyceraldehyde-3-phosphate to yield fructose-1,6-bisphosphate. Structures are available for class I FBP-aldolases but there is a paucity of detail on the class II enzymes. Characterization is sought to enable a dissection of structure/activity relationships which may assist the construction of designed aldolases for use as biocatalysts in synthetic chemistry. RESULTS: The structure of the dimeric class II FBP-aldolase from Escherichia coli has been determined using data to 2.5 A resolution. The asymmetric unit is one subunit which presents a familiar fold, the (alpha/beta)8 barrel. The active centre, at the C-terminal end of the barrel, contains a novel bimetallic-binding site with two metal ions 6.2 A apart. One ion, the identity of which is not certain, is buried and may play a structural or activating role. The other metal ion is zinc and is positioned at the surface of the barrel to participate in catalysis. CONCLUSIONS: Comparison of the structure with a class II fuculose aldolase suggests that these enzymes may share a common mechanism. Nevertheless, the class II enzymes should be subdivided into two categories on consideration of subunit size and fold, quaternary structure and metal-ion binding sites.


Subject(s)
Bacterial Proteins , Escherichia coli Proteins , Escherichia coli/enzymology , Fructose-Bisphosphate Aldolase/chemistry , Metalloproteins/chemistry , Zinc/chemistry , Amino Acid Sequence , Binding Sites , Cations/chemistry , Computer Simulation , Crystallography, X-Ray , Dimerization , Fructose-Bisphosphate Aldolase/classification , Metalloproteins/classification , Models, Molecular , Molecular Sequence Data , Potassium/chemistry , Protein Conformation , Protein Structure, Secondary
10.
J Synchrotron Radiat ; 3(Pt 1): 24-34, 1996 Jan 01.
Article in English | MEDLINE | ID: mdl-16702655

ABSTRACT

The crystal structure of a brominated oligonucleotide d(CGCG(Br)CG), chemical formula C(114)N(48)O(68)P(10)Br(2), has been analysed by multiwavelength anomalous dispersion (MAD) methods. The oligonucleotide crystallizes in space group P2(1)2(1)2(1) with a = 17.97, b = 30.98, c = 44.85 A, alpha = beta = gamma 90 degrees . Data to a resolution of 1.65 A were collected at four wavelengths about the K-absorption edge of the bromine atom (lambda(1) = 0.9323 A, a reference wavelength at the long-wavelength side of the edge; lambda(2) = 0.9192 A, at the absorption-edge inflection point; lambda(3) = 0.9185 A, at the ;white line' absorption maximum; lambda(4) = 0.8983 A, a reference wavelength at the short-wavelength side) using synchrotron radiation at Station PX9.5, SRS, Daresbury. Multiwavelength data could be collected on a single-crystal as the sample was radiation stable. Anomalous and dispersive Patterson maps were readily interpretable to give the bromine anomalous scatterer positions. Phase calculations to 1.65 A, resolution, using all four wavelengths, gave a figure of merit of 0.825 for 2454 reflections. The electron-density map was readily interpretable showing excellent connectivity for the sugar/phosphate backbone and each base was easily characterized. The two nucleotide strands paired up as expected in an antiparallel Watson-Crick-type manner. The structure was refined to 1.65 A using all the data (R-factor = 17.0% based on 3151 reflections, with a data-to-parameter ratio of 2.6). In addition to the four-wavelength analysis, a variety of other phasing strategies, and the associated quality of the resulting electron-density maps, were compared. These included use of either of the reference wavelength data sets in the two possible three-wavelength phasing combinations to assess their relative effectiveness. Moreover, the time dependence upon measuring the Bijvoet differences and its effect upon phasing was also investigated. Finally, the use of only two wavelengths, including Friedel pairs, is demonstrated (the theoretical minimum case); this is of particular interest when considering overall beam time needs and is clearly a feasible experimental strategy, as shown here.

11.
Acta Crystallogr D Biol Crystallogr ; 51(Pt 1): 39-47, 1995 Jan 01.
Article in English | MEDLINE | ID: mdl-15299334

ABSTRACT

OppA is a 58.8 kDa bacterial transport protein involved in the transport of peptides across the cytoplasmic membrane of Gram-negative bacteria. It binds peptides from two to five residues in length but with little sequence specificity. OppA from Salmonella typhimurium has been cloned and expressed in E. coli and the protein cocrystallized with uranyl acetate, producing two distinct crystal forms with different uranium sites. Multiple-wavelength data collected about the uranium L(III) edge have been collected at the Daresbury Synchrotron Radiation Source (SRS) to a nominal resolution limit of 2.3 A. Maximum-likelihood phasing methods have been used in phase determination from the multiple-wavelength data giving a readily interpretable electron-density map, without any density modification. The electron-density map, calculated at 2.3 A resolution shows OppA to be a bilobal, principally beta-stranded, three-domain protein. The tri-lysine ligand molecule can be clearly seen in the peptide-binding site between the two lobes.

16.
Science ; 184(4136): 520, 1974 May 03.
Article in English | MEDLINE | ID: mdl-17755010
SELECTION OF CITATIONS
SEARCH DETAIL
...